Citation: | Liu GG, Zhang BL. Beam splitter benefits from topological antichiral edge states. Opto-Electron Adv 6, 230056 (2023). doi: 10.29026/oea.2023.230056 |
[1] | Ozawa T, Price HM, Amo A, Goldman N, Hafezi M et al. Topological photonics. Rev Mod Phys 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006 |
[2] | Skirlo SA, Lu L, Igarashi Y, Yan QH, Joannopoulos J et al. Experimental observation of large Chern numbers in photonic crystals. Phys Rev Lett 115, 253901 (2015). doi: 10.1103/PhysRevLett.115.253901 |
[3] | Zhang L, Yang YH, He MJ, Wang HX, Yang ZJ et al. Valley kink states and topological channel intersections in substrate-integrated photonic circuitry. Laser Photonics Rev 13, 1900159 (2019). doi: 10.1002/lpor.201900159 |
[4] | Cheng XJ, Jouvaud C, Ni X, Mousavi SH, Genack AZ et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat Mater 15, 542–548 (2016). doi: 10.1038/nmat4573 |
[5] | Chen JF, Li ZY. Configurable topological beam splitting via antichiral gyromagnetic photonic crystal. Opto-Electron Sci 1, 220001 (2022). doi: 10.29026/oes.2022.220001 |
[6] | Colomés E, Franz M. Antichiral edge states in a modified Haldane nanoribbon. Phys Rev Lett 120, 086603 (2018). doi: 10.1103/PhysRevLett.120.086603 |
[7] | Chen JF, Liang WY, Li ZY. Antichiral one-way edge states in a gyromagnetic photonic crystal. Phys Rev B 101, 214102 (2020). doi: 10.1103/PhysRevB.101.214102 |
[8] | Zhou PH, Liu GG, Yang YH, Hu YH, Ma SL et al. Observation of photonic antichiral edge states. Phys Rev Lett 125, 263603 (2020). doi: 10.1103/PhysRevLett.125.263603 |
[9] | Liu GG, Gao Z, Wang Q, Xi X, Hu YH et al. Topological Chern vectors in three-dimensional photonic crystals. Nature 609, 925–930 (2022). doi: 10.1038/s41586-022-05077-2 |
Schematic illustration of the topological beam splitter based on antichiral edge states.