Citation: | Guo YM, Chen KL, Zhou JH, Li ZD, Han WY et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv 6, 230039 (2023). doi: 10.29026/oea.2023.230039 |
[1] | Rao CH, Gu NT, Rao XJ, Li C, Zhang LQ et al. First light of the 1.8-m solar telescope–CLST. Sci China Phys Mech Astron 63, 109631 (2020). doi: 10.1007/s11433-019-1557-3 |
[2] | Jiang WH. Overview of adaptive optics development. Opto-Electron Eng 45, 170489 (2018). |
[3] | Rao CH, Zhu L, Zhang LQ, Rao XJ, Bao H et al. Development of solar adaptive optics. Opto-Electron Eng 45, 170733 (2018). |
[4] | Rao CH, Zhu L, Rao XJ, Zhang LQ, Bao H et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1m new vacuum solar telescope at Fuxian solar observatory. Astrophys J 833, 210 (2016). doi: 10.3847/1538-4357/833/2/210 |
[5] | Wang JY, Guo YM, Kong L, Zhang LQ, Gu NT et al. Automatic disturbance identification for linear quadratic Gaussian control in adaptive optics. Mon Not R Astron Soc 496, 5126–5138 (2020). doi: 10.1093/mnras/staa1698 |
[6] | Kim D, Choi H, Brendel T, Quach H, Esparza M et al. Advances in optical engineering for future telescopes. Opto-Electron Adv 4, 210040 (2021). doi: 10.29026/oea.2021.210040 |
[7] | Guo YM, Zhong LB, Min L, Wang JY, Wu Y et al. Adaptive optics based on machine learning: a review. Opto-Electron Adv 5, 200082 (2022). doi: 10.29026/oea.2022.200082 |
[8] | Beckers JM. Adaptive optics for astronomy: principles, performance, and applications. Annu Rev Astron Astrophys 31, 13–62 (1993). doi: 10.1146/annurev.aa.31.090193.000305 |
[9] | Wildi FP, Brusa G, Lloyd-Hart M, Close LM, Riccardi A. First light of the 6.5-m MMT adaptive optics system. Proc SPIE 5169, 17–25 (2003). doi: 10.1117/12.507687 |
[10] | Esposito S, Riccardi A, Pinna E, Puglisi A, Quirós-Pacheco F et al. Large binocular telescope adaptive optics system: new achievements and perspectives in adaptive optics. Proc SPIE 8149, 814902 (2011). doi: 10.1117/12.898641 |
[11] | Morzinski KM, Close LM, Males JR, Kopon D, Hinz PM et al. MagAO: Status and on-sky performance of the Magellan adaptive optics system. Proc SPIE 9148, 914804 (2014). |
[12] | Briguglio R, Quirós-Pacheco F, Males JR, Xompero M, Riccardi A et al. Optical calibration and performance of the adaptive secondary mirror at the Magellan telescope. Sci Rep 8, 10835 (2018). doi: 10.1038/s41598-018-29171-6 |
[13] | Briguglio R, Xompero M, Riccardi A, Andrighettoni M, Pescoller D et al. Optical calibration and test of the VLT Deformable Secondary Mirror. In Proceedings of the Third AO4ELT Conference (2013);https://doi.org/10.12839/AO4ELT3.13507. |
[14] | Guo YM, Zhang A, Fan XL, Rao CH, Wei L et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror. Opt Lett 41, 5712–5715 (2016). doi: 10.1364/OL.41.005712 |
[15] | Guo YM, Zhang A, Fan XL, Rao CH, Wei L et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m telescope. Proc SPIE 9909, 99091D (2016). |
[16] | Kuiper S, Jonker WA, Maniscalco MP, Priem H, Coolen C et al. Adaptive secondary mirror development for the UH-88 telescope. In 6th International Conference on Adaptive Optics for Extremely Large Telescopes, (2019). |
[17] | Hippler S. Adaptive optics for extremely large telescopes. J Astron Instrum 8, 1950001 (2019). doi: 10.1142/S2251171719500016 |
[18] | Pedichini F, Stangalini M, Ambrosino F, Puglisi A, Pinna E et al. High contrast imaging in the visible: first experimental results at the Large Binocular Telescope. Astron J 154, 74 (2017). doi: 10.3847/1538-3881/aa7ff3 |
[19] | Close LM, Males JR, Morzinski K, Kopon D, Follette K et al. Diffraction-limited visible light images of orion trapezium cluster with the magellan adaptive secondary adaptive optics system (MagAO). Astrophys J 774, 94 (2013). doi: 10.1088/0004-637X/774/2/94 |
[20] | Guo YM, Wu Y, Li Y, Rao XJ, Rao CH. Deep phase retrieval for astronomical Shack–Hartmann wavefront sensors. Mon Not R Astron Soc 510, 4347–4354 (2022). doi: 10.1093/mnras/stab3690 |
[21] | Kasper M, Fedrigo E, Looze DP, Bonnet H, Ivanescu L et al. Fast calibration of high-order adaptive optics systems. J Opt Soc Am A 21, 1004–1008 (2004). doi: 10.1364/JOSAA.21.001004 |
[22] | Noll RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am A 66, 207–211 (1976). doi: 10.1364/JOSA.66.000207 |
The sketch of the 1.8-m adaptive telescope.
(a) The sketch of the PDSM-241. (b) Actuator layout (clear aperture: 270 mm). (c) The uncompensated aberration of PDSM-241.
The sub-aperture layout of the SHWFS (effective diameter: 16 mm) and the image of a collimated wave
Control strategy of the AOS
(a) Flowchart of calibration of the interaction matrix. (b) closed-loop wavefront control.
Temporal high order RMS error with AO system on and off at the time (UT) 14:00 on April 28, 2022. (HIP–49669, altitude angle: 71 degrees, azimuth: 217 degrees)
Residual wavefront error distribution at the time (UT) between 13:30 and 16:15 on April 28, 2022.
Closed-loop wavefront noise error distribution at the time (UT) between. 13:30 and 16:15 on April 28, 2022.
Image motion comparison with the AO system on and off. x-tilt: Open-loop: 0.4", Closed-loop: 0.015" (left panel); y-tilt: Open-loop: 0.21", Closed-loop: 0.017" (right panel)
PSD of tracking error in open-loop and closed-loop with the AO system on and off. x-tilt (left panel) and y-tilt (right panel).
PSD of AO system in open-loop and closed-loop (left panel), error transfer function (right panel).
Comparison of the Zernike RMS error in open-loop (circle) and closed-loop (square). The solid curve is the fitting of the Kolmogorov turbulence model to the open-loop data.
The distribution of r0 at the time (UT) between 13:30 and 16:15 on April 28, 2022.
The visible short exposure images of the star HIP49669 (2022-04-28), the images are displayed in linear scale and the peaks are normalized to 1. (a) R-band, SR=0.491, FWHM = 0.0937”. (b) R-band, SR=0.481, FWHM = 0.0953”. (c) I-band, SR=0.574, FWHM=0.113”. (d) I-band, SR = 0.582, FWHM=0.111”.
Comparison of I-band closed-loop (left) and open-loop (right) image of the star HIP63418 (V-magnitude: 8.16)
R band (~640 nm) closed-loop Strehl ratios with guide stars of different magnitudes
I band (~860 nm) closed-loop Strehl ratios with guide stars of different magnitudes