He JH. High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots. Opto-Electron Adv 6, 230022 (2023). doi: 10.29026/oea.2023.230022
Citation: He JH. High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots. Opto-Electron Adv 6, 230022 (2023). doi: 10.29026/oea.2023.230022

News & Views Open Access

High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots

More Information
  • All inorganic CsPbBr3 quantum dots (QDs) are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield (PLQY) and defect tolerance. However, the poor stability and degraded luminescent performance may impede their further commercialization because of the separation of conventional ligands from the QDs surfaces. Recently, Zang replaced the regular oleic acid with 2-hexyl-decanoic acid (DA), which possesses higher binding energy on the QDs surfaces, to act as ligands of QDs, exhibiting PLQY of 96% and excellent stabilities against ethanol and water. WLEDs with DA-modified  CsPbBr3 QDs achieved improved thermal stability, a color rendering index of 93, a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K, implying their prominent applications in solid-state lighting and displays.
  • 加载中
  • [1] Sun YR, Giebink NC, Kanno H, Ma BW, Thompson ME et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006). doi: 10.1038/nature04645

    CrossRef Google Scholar

    [2] Schreuder MA, Xiao K, Ivanov IN, Weiss SM, Rosenthal SJ. White light-emitting diodes based on Ultrasmall CdSe nanocrystal electroluminescence. Nano Lett 10, 573–576 (2010). doi: 10.1021/nl903515g

    CrossRef Google Scholar

    [3] Crawford MH. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron 15, 1028–1040 (2009). doi: 10.1109/JSTQE.2009.2013476

    CrossRef Google Scholar

    [4] Wang Y, Li XM, Song JZ, Xiao L, Zeng HB et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater 27, 7101–7108 (2015). doi: 10.1002/adma.201503573

    CrossRef Google Scholar

    [5] Sun SB, Yuan D, Xu Y, Wang AF, Deng ZT. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016). doi: 10.1021/acsnano.5b08193

    CrossRef Google Scholar

    [6] Li CL, Zang ZG, Chen WW, Hu ZP, Tang XS et al. Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt Express 24, 15071–15078 (2016). doi: 10.1364/OE.24.015071

    CrossRef Google Scholar

    [7] Lu TW, Lin XS, Guo QA, Tu CC, Liu SB et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [8] Smock SR, Williams TJ, Brutchey RL. Quantifying the thermodynamics of ligand binding to CsPbBr3 quantum dots. Angew Chem Int Ed 57, 11711–11715 (2018). doi: 10.1002/anie.201806916

    CrossRef Google Scholar

    [9] Yan DD, Zhao SY, Zhang YB, Wang HX, Zang ZG. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron Adv 5, 200075 (2022). doi: 10.29026/oea.2022.200075

    CrossRef Google Scholar

    [10] Brennan MC, Herr JE, Nguyen-Beck TS, Zinna J, Draguta S et al. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J Am Chem Soc 139, 12201–12208 (2017). doi: 10.1021/jacs.7b05683

    CrossRef Google Scholar

    [11] Yan DD, Shi TC, Zang ZG, Zhou TW, Liu ZZ et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 15, 1901173 (2019). doi: 10.1002/smll.201901173

    CrossRef Google Scholar

    [12] Le TH, Choi Y, Kim S, Lee U, Heo E et al. Highly elastic and >200% reversibly stretchable down-conversion white light-emitting diodes based on quantum dot gel emitters. Adv Opt Mater 8, 1901972 (2020). doi: 10.1002/adom.201901972

    CrossRef Google Scholar

    [13] Song YH, Yoo JS, Kang BK, Choi SH, Ji EK et al. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs. Nanoscale 8, 19523–19526 (2016). doi: 10.1039/C6NR07410C

    CrossRef Google Scholar

    [14] McKittrick J, Shea-Rohwer LE. Review: down conversion materials for solid-state lighting. J Am Ceram Soc 97, 1327–1352 (2014). doi: 10.1111/jace.12943

    CrossRef Google Scholar

    [15] Song JZ, Li JH, Li XM, Xu LM, Dong YH et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27, 7162–7167 (2015). doi: 10.1002/adma.201502567

    CrossRef Google Scholar

    [16] Quarta D, Imran M, Capodilupo AL, Petralanda U, Van Beek B et al. Stable ligand coordination at the surface of colloidal CsPbBr3 nanocrystals. J Phys Chem Lett 10, 3715–3726 (2019). doi: 10.1021/acs.jpclett.9b01634

    CrossRef Google Scholar

    [17] Yang DD, Li XM, Zhou WH, Zhang SL, Meng CF et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv Mater 31, 1900767 (2019). doi: 10.1002/adma.201900767

    CrossRef Google Scholar

    [18] Almeida G, Infante I, Manna L. Resurfacing halide perovskite nanocrystals. Science 364, 833–834 (2019). doi: 10.1126/science.aax5825

    CrossRef Google Scholar

    [19] Krieg F, Ochsenbein ST, Yakunin S, Ten Brinck S, Aellen P et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett 3, 641–646 (2018). doi: 10.1021/acsenergylett.8b00035

    CrossRef Google Scholar

    [20] Pan J, Shang YQ, Yin J, De Bastiani M, Peng W et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J Am Chem Soc 140, 562–565 (2018). doi: 10.1021/jacs.7b10647

    CrossRef Google Scholar

    [21] Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021). doi: 10.29026/oea.2021.210022

    CrossRef Google Scholar

    [22] Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1

    CrossRef Google Scholar

    [23] Jin SX, Li J, Li JZ, Lin JY, Jiang HX. GaN microdisk light emitting diodes. Appl Phys Lett 76, 631–633 (2000). doi: 10.1063/1.125841

    CrossRef Google Scholar

    [24] Sekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett 96, 231104 (2010). doi: 10.1063/1.3443734

    CrossRef Google Scholar

    [25] Zhang F, Liu J, You GJ, Zhang CF, Mohney SE et al. Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Opt Express 20, A333–A339 (2012). doi: 10.1364/OE.20.00A333

    CrossRef Google Scholar

    [26] Chanyawadee S, Lagoudakis PG, Harley RT, Charlton MDB, Talapin DV et al. Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv Mater 22, 602–606 (2010). doi: 10.1002/adma.200902262

    CrossRef Google Scholar

    [27] Wang SW, Hong KB, Tsai YL, Teng CH, Tzou AJ et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci Rep 7, 42962 (2017). doi: 10.1038/srep42962

    CrossRef Google Scholar

    [28] Pust P, Schmidt PJ, Schnick W. A revolution in lighting. Nat Mater 14, 454–458 (2015). doi: 10.1038/nmat4270

    CrossRef Google Scholar

    [29] Jin SX, Li J, Lin JY, Jiang HX. InGaN/GaN quantum well interconnected microdisk light emitting diodes. Appl Phys Lett 77, 3236–3238 (2000). doi: 10.1063/1.1326479

    CrossRef Google Scholar

    [30] Wu TZ, Sher CW, Lin Y, Lee CF, Liang SJ et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci 8, 1557 (2018). doi: 10.3390/app8091557

    CrossRef Google Scholar

    [31] Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021). doi: 10.29026/oea.2021.200077

    CrossRef Google Scholar

    [32] Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23, 4248–4253 (2011). doi: 10.1002/adma.201102306

    CrossRef Google Scholar

    [33] Xue Q, Zhang HJ, Zhu MS, Pei ZX, Li HF et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29, 1604847 (2017). doi: 10.1002/adma.201604847

    CrossRef Google Scholar

    [34] Guan QW, Ma JF, Yang WJ, Zhang R, Zhang XJ et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11, 14123–14133 (2019). doi: 10.1039/C9NR04421C

    CrossRef Google Scholar

    [35] Lu SY, Sui LZ, Liu Y, Yong X, Xiao GJ et al. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv Sci 6, 1801470 (2019). doi: 10.1002/advs.201801470

    CrossRef Google Scholar

    [36] Xu Q, Yang WJ, Wen YY, Liu SK, Liu Z et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today 16, 90–101 (2019). doi: 10.1016/j.apmt.2019.05.001

    CrossRef Google Scholar

    [37] Zhang CF, Cui YY, Song L, Liu XF, Hu ZB. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016). doi: 10.1016/j.talanta.2015.12.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(4180) PDF downloads(628) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint