Li Z, Chen JX, Li LZ, Zhang JJ, Yao JP. Exceptional-point-enhanced sensing in an all-fiber bending sensor. Opto-Electron Adv 6, 230019 (2023). doi: 10.29026/oea.2023.230019
Citation: Li Z, Chen JX, Li LZ, Zhang JJ, Yao JP. Exceptional-point-enhanced sensing in an all-fiber bending sensor. Opto-Electron Adv 6, 230019 (2023). doi: 10.29026/oea.2023.230019

Article Open Access

Exceptional-point-enhanced sensing in an all-fiber bending sensor

More Information
  • An exceptional-point (EP) enhanced fiber-optic bending sensor is reported. The sensor is implemented based on parity-time (PT)-symmetry using two coupled Fabry-Perot (FP) resonators consisting of three cascaded fiber Bragg gratings (FBGs) inscribed in an erbium-ytterbium co-doped fiber (EYDF). The EP is achieved by controlling the pumping power to manipulate the gain and loss of the gain and loss FP resonators. Once a bending force is applied to the gain FP resonator to make the operation of the system away from its EP, frequency splitting occurs, and the frequency spacing is a nonlinear function of the bending curvature, with an increased slope near the EP. Thus, by measuring the frequency spacing, the bending information is measured with increased sensitivity. To achieve high-speed and high-resolution interrogation, the optical spectral response of the sensor is converted to the microwave domain by implementing a dual-passband microwave-photonic filter (MPF), with the spacing between the two passbands equal to that of the frequency splitting. The proposed sensor is evaluated experimentally. A curvature sensing range from 0.28 to 2.74 m−1 is achieved with an accuracy of 7.56×10−4 m−1 and a sensitivity of 1.32 GHz/m−1, which is more than 4 times higher than those reported previously.
  • 加载中
  • [1] Udd E. An overview of fiber-optic sensors. Rev Sci Instrum 66, 4015–4030 (1995). doi: 10.1063/1.1145411

    CrossRef Google Scholar

    [2] Kersey AD, Davis MA, Patrick HJ, LeBlanc M, Koo KP et al. Fiber grating sensors. J Lightwave Technol 15, 1442–1463 (1997). doi: 10.1109/50.618377

    CrossRef Google Scholar

    [3] Wang Q, Liu Y. Review of optical fiber bending/curvature sensor. Measurement 130, 161–176 (2018). doi: 10.1016/j.measurement.2018.07.068

    CrossRef Google Scholar

    [4] Wada D, Igawa H, Murayama H. Simultaneous distributed measurement of the strain and temperature for a four-point bending test using polarization-maintaining fiber Bragg grating interrogated by optical frequency domain reflectometry. Measurement 94, 745–752 (2016). doi: 10.1016/j.measurement.2016.09.025

    CrossRef Google Scholar

    [5] Zheng D, Madrigal J, Barrera D, Sales S, Capmany J. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor. IEEE Photonics Technol Lett 29, 1707–1710 (2017). doi: 10.1109/LPT.2017.2742579

    CrossRef Google Scholar

    [6] Zhang YS, Zhang WG, Chen L, Zhang YX, Wang S et al. Concave-lens-like long-period fiber grating bidirectional high-sensitivity bending sensor. Opt Lett 42, 3892–3895 (2017). doi: 10.1364/OL.42.003892

    CrossRef Google Scholar

    [7] Xiao DR, Wang GQ, Yu FH, Liu SQ, Xu WJ et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter. Opt Express 30, 5402–5413 (2022). doi: 10.1364/OE.445982

    CrossRef Google Scholar

    [8] Wiersig J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys Rev Lett 112, 203901 (2014). doi: 10.1103/PhysRevLett.112.203901

    CrossRef Google Scholar

    [9] Chen WJ, Kaya Özdemir Ş, Zhao GM, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017). doi: 10.1038/nature23281

    CrossRef Google Scholar

    [10] Hodaei H, Hassan AU, Wittek S, Garcia-Gracia H, El-Ganainy R et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017). doi: 10.1038/nature23280

    CrossRef Google Scholar

    [11] Lai YH, Lu YK, Suh MG, Yuan ZQ, Vahala K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019). doi: 10.1038/s41586-019-1777-z

    CrossRef Google Scholar

    [12] Dong ZY, Li ZP, Yang FY, Qiu CW, Ho JS. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat Electron 2, 335–342 (2019). doi: 10.1038/s41928-019-0284-4

    CrossRef Google Scholar

    [13] Yu S, Meng Y, Tang JS, Xu XY, Wang YT et al. Experimental investigation of quantum PT-enhanced sensor. Phys Rev Lett 125, 240506 (2020). doi: 10.1103/PhysRevLett.125.240506

    CrossRef Google Scholar

    [14] Kononchuk R, Cai JZ, Ellis F, Thevamaran R, Kottos T. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature 607, 697–702 (2022). doi: 10.1038/s41586-022-04904-w

    CrossRef Google Scholar

    [15] Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett 80, 5243–5246 (1998). doi: 10.1103/PhysRevLett.80.5243

    CrossRef Google Scholar

    [16] Özdemir ŞK, Rotter S, Nori F, Yang L. Parity–time symmetry and exceptional points in photonics. Nat Mater 18, 783–798 (2019). doi: 10.1038/s41563-019-0304-9

    CrossRef Google Scholar

    [17] Li Z, Zhang JJ, Zhi YY, Li LZ, Liao BL et al. All-fiber optical nonreciprocity based on parity-time-symmetric Fabry-Perot resonators. Commun Phys 5, 332 (2022). doi: 10.1038/s42005-022-01120-w

    CrossRef Google Scholar

    [18] Li LZ, Cao Y, Zhi YY, Zhang JJ, Zou YT et al. Polarimetric parity-time symmetry in a photonic system. Light Sci Appl 9, 169 (2020). doi: 10.1038/s41377-020-00407-3

    CrossRef Google Scholar

    [19] Zhang JJ, Li LZ, Wang GY, Feng XH, Guan BO et al. Parity-time symmetry in wavelength space within a single spatial resonator. Nat Commun 11, 3217 (2020). doi: 10.1038/s41467-020-16705-8

    CrossRef Google Scholar

    [20] Wang HT, Guo J, Zhang JN, Zhou W, Wang YS et al. Sensing enhancement at an exceptional point in a nonreciprocal fiber ring cavity. J Lightwave Technol 38, 2511–2515 (2020). doi: 10.1109/JLT.2020.2965626

    CrossRef Google Scholar

    [21] Liu XL, Wang HT, Zhang JN, Guo J, Wu X. Enhancement of sensitivity near exceptional point by constructing nonreciprocal fiber cavity assisted by isolator and erbium-doped fiber. IEEE Sens J 21, 18823–18828 (2021). doi: 10.1109/JSEN.2021.3092058

    CrossRef Google Scholar

    [22] Li WZ, Li M, Yao JP. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans Microwave Theory Tech 60, 1287–1296 (2012). doi: 10.1109/TMTT.2012.2187678

    CrossRef Google Scholar

    [23] Yao JP. Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors. Fiber Integr Opt 34, 204–216 (2015). doi: 10.1080/01468030.2015.1061622

    CrossRef Google Scholar

    [24] Deng H, Zhang WF, Yao JP. High-speed and high-resolution interrogation of a silicon photonic microdisk sensor based on microwave photonic filtering. J Lightwave Technol 36, 4243–4249 (2018). doi: 10.1109/JLT.2018.2843724

    CrossRef Google Scholar

    [25] Hodaei H, Miri MA, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014). doi: 10.1126/science.1258480

    CrossRef Google Scholar

    [26] Zhao Y, Cai L, Li XG. Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure. IEEE Trans Instrum Meas 66, 141–147 (2017). doi: 10.1109/TIM.2016.2615479

    CrossRef Google Scholar

    [27] Wiersig J. Prospects and fundamental limits in exceptional point-based sensing. Nat Commun 11, 2454 (2020). doi: 10.1038/s41467-020-16373-8

    CrossRef Google Scholar

    [28] Boetti NG, Scarpignato GC, Lousteau J, Pugliese D, Bastard L et al. High concentration Yb-Er co-doped phosphate glass for optical fiber amplification. J Opt 17, 065705 (2015). doi: 10.1088/2040-8978/17/6/065705

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(3563) PDF downloads(754) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint