Hao Z, Jiang BQ, Ma YX, Yi RX, Gan XT et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electron Adv 6, 230012 (2023). doi: 10.29026/oea.2023.230012
Citation: Hao Z, Jiang BQ, Ma YX, Yi RX, Gan XT et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electron Adv 6, 230012 (2023). doi: 10.29026/oea.2023.230012

Article Open Access

Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal

More Information
  • The conversion-efficiency for second-harmonic (SH) in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica, and pulse pump lasers with high peak power are widely employed. Here, we propose a simple strategy to efficiently realize the broadband and continuous wave (CW) pumped SH, by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter. In the experiment, high efficiency up to 0.08 %W-1mm-1 is reached for a C-band pump laser. The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser, but also multi-frequencies mixing supported by three CW light sources. Moreover, broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth. The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes, development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
  • 加载中
  • [1] Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Phys Rev Lett 7, 118–119 (1961). doi: 10.1103/PhysRevLett.7.118

    CrossRef Google Scholar

    [2] Carman RL, Chiao RY, Kelley PL. Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification. Phys Rev Lett 17, 1281–1283 (1966). doi: 10.1103/PhysRevLett.17.1281

    CrossRef Google Scholar

    [3] Zuo YG, Yu WT, Liu C, Cheng X, Qiao RX et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat Nanotechnol 15, 987–991 (2020). doi: 10.1038/s41565-020-0770-x

    CrossRef Google Scholar

    [4] Wang BB, Ji YF, Gu LP, Fang L, Gan XT et al. High-efficiency second-harmonic and sum-frequency generation in a silicon nitride microring integrated with few-layer GaSe. ACS Photonics 9, 1671–1678 (2022). doi: 10.1021/acsphotonics.2c00038

    CrossRef Google Scholar

    [5] Zhu ML, Zhong MZ, Guo X, Wang YS, Chen ZH et al. Efficient and anisotropic second harmonic generation in few-layer SnS film. Adv Opt Mater 9, 2101200 (2021). doi: 10.1002/adom.202101200

    CrossRef Google Scholar

    [6] Krause B, Mishra D, Chen JY, Argyropoulos C, Hoang T. Nonlinear strong coupling by second-harmonic generation enhancement in plasmonic nanopatch antennas. Adv Opt Mater 10, 2200510 (2022). doi: 10.1002/adom.202200510

    CrossRef Google Scholar

    [7] Hao Z, Jiang BQ, Ma YX, Yi RX, Jin HY et al. Strain-controlled phase matching of optical harmonic generation in microfibers. Phys Rev Appl 19, L031002 (2023). doi: 10.1103/PhysRevApplied.19.L031002

    CrossRef Google Scholar

    [8] Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013

    CrossRef Google Scholar

    [9] Li C L, Liu J C, Zhang F M et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology. Opto-Electron Eng 49, 210438 (2022). doi: 10.12086/oee.2022.210438

    CrossRef Google Scholar

    [10] Javůrek D, Peřina Jr J. Analytical model of surface second-harmonic generation. Sci Rep 9, 4679 (2019). doi: 10.1038/s41598-019-39260-9

    CrossRef Google Scholar

    [11] Fujii Y, Kawasaki BS, Hill KO, Johnson DC. Sum-frequency light generation in optical fibers. Opt Lett 5, 48–50 (1980). doi: 10.1364/OL.5.000048

    CrossRef Google Scholar

    [12] Gouveia MA, Lee T, Ismaeel R, Ding M, Broderick NGR et al. Second harmonic generation and enhancement in microfibers and loop resonators. Appl Phys Lett 102, 201120 (2013). doi: 10.1063/1.4807767

    CrossRef Google Scholar

    [13] Ménard JM, Köttig F, Russell PSJ. Broadband electric-field-induced LP01 and LP02 second harmonic generation in Xe-filled hollow-core PCF. Opt Lett 41, 3795–3798 (2016). doi: 10.1364/OL.41.003795

    CrossRef Google Scholar

    [14] Yuan JH, Sang XZ, Wu Q, Zhou GY, Li F et al. Generation of second-harmonics near ultraviolet wavelengths from femtosecond pump pulses. IEEE Photon Technol Lett 28, 1719–1722 (2016). doi: 10.1109/LPT.2016.2530744

    CrossRef Google Scholar

    [15] Chen K, Zhou X, Cheng X, Qiao RX, Cheng Y et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat Photonics 13, 754–759 (2019). doi: 10.1038/s41566-019-0492-5

    CrossRef Google Scholar

    [16] Kashyap R. Phase-matched periodic electric-field-induced second-harmonic generation in optical fibers. J Opt Soc Am B 6, 313–328 (1989). doi: 10.1364/JOSAB.6.000313

    CrossRef Google Scholar

    [17] Canagasabey A, Corbari C, Gladyshev AV, Liegeois F, Guillemet S et al. High-average-power second-harmonic generation from periodically poled silica fibers. Opt Lett 34, 2483–2485 (2009). doi: 10.1364/OL.34.002483

    CrossRef Google Scholar

    [18] Nasu H, Okamoto H, Kurachi K, Matsuoka J, Kamiya K et al. Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions. J Opt Soc Am B 12, 644–649 (1995). doi: 10.1364/JOSAB.12.000644

    CrossRef Google Scholar

    [19] Boyd RW. Nonlinear Optics 3rd ed (Elsevier, Amsterdam, 2008).

    Google Scholar

    [20] Yu ZQ, Zhang N, Wang JX, Dai ZJ, Gong C et al. 0.35% THz pulse conversion efficiency achieved by Ti: sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electron Adv 5, 210065 (2022). doi: 10.29026/oea.2022.210065

    CrossRef Google Scholar

    [21] Lin XJ, Feng QC, Zhu Y, Ji SH, Xiao B et al. Diode-pumped wavelength-switchable visible Pr3+: YLF laser and vortex laser around 670 nm. Opto-Electron Adv 4, 210006 (2021). doi: 10.29026/oea.2021.210006

    CrossRef Google Scholar

    [22] Raghunathan V, Han Y, Korth O, Ge NH, Potma EO. Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett 36, 3891–3893 (2011). doi: 10.1364/OL.36.003891

    CrossRef Google Scholar

    [23] Liao K, Chen Y, Yu ZC, Hu XY, Wang XY et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021). doi: 10.29026/oea.2021.200060

    CrossRef Google Scholar

    [24] Jiang BQ, Hao Z, Ji YF, Hou YG, Yi RX et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci Appl 9, 63 (2020). doi: 10.1038/s41377-020-0304-1

    CrossRef Google Scholar

    [25] Agrawal GP. Nonlinear Fiber Optics 6th ed (Elsevier, Amsterdam, 2019).

    Google Scholar

    [26] Ménard JM, Russell PSJ. Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber. Opt Lett 40, 3679–3682 (2015). doi: 10.1364/OL.40.003679

    CrossRef Google Scholar

    [27] Hao Z, Jiang BQ, Hou YG, Li CY, Yi RX et al. Continuous-wave pumped frequency upconversions in an InSe-integrated microfiber. Opt Lett 46, 733–736 (2021). doi: 10.1364/OL.413451

    CrossRef Google Scholar

    [28] Ma YX, Jiang BQ, Guo YS, Zhang PW, Cheng TL et al. Suspended-core fiber with embedded GaSe nanosheets for second harmonic generation. Opt Express 30, 32438–32446 (2022). doi: 10.1364/OE.465248

    CrossRef Google Scholar

    [29] Chen JH, Tan J, Wu GX, Zhang XJ, Xu F et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci Appl 8, 8 (2019). doi: 10.1038/s41377-018-0115-9

    CrossRef Google Scholar

    [30] Hao Z, Ma YX, Jiang BQ, Hou YG, Li AL et al. Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Sci China Inf Sci 65, 162403 (2022). doi: 10.1007/s11432-021-3331-3

    CrossRef Google Scholar

    [31] Cheng TL, Gao WQ, Kawashima H, Deng DH, Liao MS et al. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber. Opt Lett 39, 2145–2147 (2014). doi: 10.1364/OL.39.002145

    CrossRef Google Scholar

    [32] Zhu EY, Qian L, Helt LG, Liscidini M, Sipe JE et al. Phase-matching with a twist: second-harmonic generation in birefringent periodically poled fibers. J Opt Soc Am B 27, 2410–2415 (2010). doi: 10.1364/JOSAB.27.002410

    CrossRef Google Scholar

    [33] Allakhverdiev KR, Yetis MÖ, Özbek S, Baykara TK, Salaev EY. Effective nonlinear GaSe crystal. optical properties and applications. Laser Phys 19, 1092–1104 (2009). doi: 10.1134/S1054660X09050375

    CrossRef Google Scholar

    [34] Bringuier E, Bourdon A, Piccioli N, Chevy A. Optical second-harmonic generation in lossy media: application to GaSe and InSe. Phys Rev B 49, 16971–16982 (1994). doi: 10.1103/PhysRevB.49.16971

    CrossRef Google Scholar

    [35] Zhou X, Cheng JX, Zhou YB, Cao T, Hong H et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc 137, 7994–7997 (2015). doi: 10.1021/jacs.5b04305

    CrossRef Google Scholar

    [36] Sutherland RL. Handbook of Nonlinear Optics 2nd ed (CRC Press, Boca Raton, 2003).

    Google Scholar

    [37] Ciret C, Alexander K, Poulvellarie N, Billet M, Arabi CM et al. Influence of longitudinal mode components on second harmonic generation in III-V-on-insulator nanowires. Opt Express 28, 31584–31593 (2020). doi: 10.1364/OE.402150

    CrossRef Google Scholar

    [38] Lægsgaard J. Theory of surface second-harmonic generation in silica nanowires. J Opt Soc Am B 27, 1317–1324 (2010). doi: 10.1364/JOSAB.27.001317

    CrossRef Google Scholar

    [39] Singh N, Raval M, Ruocco A, Watts MR. Broadband 200-nm second-harmonic generation in silicon in the telecom band. Light Sci Appl 9, 17 (2020). doi: 10.1038/s41377-020-0254-7

    CrossRef Google Scholar

    [40] Liao F, Yu JX, Gu ZQ, Yang ZY, Hasan T et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci Adv 5, eaax7398 (2019). doi: 10.1126/sciadv.aax7398

    CrossRef Google Scholar

  • Supplementary information for Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(4118) PDF downloads(734) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint