Cui SY, Lu YY, Kong DP, Luo HY, Peng L et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6, 220172 (2023). doi: 10.29026/oea.2023.220172
Citation: Cui SY, Lu YY, Kong DP, Luo HY, Peng L et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6, 220172 (2023). doi: 10.29026/oea.2023.220172

Article Open Access

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors

More Information
  • These authors contributed equally to this work

  • Corresponding author: KC Xu, E-mail: xukc@zju.edu.cn
  • Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions. However, achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge. In this work, a wearable capacitive-type Ga2O3/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique. Owing to the photothermal effect of laser, the Ga2O3-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19 Ω·cm, while the untreated regions serve as active sensing layers in response to moisture changes. Under 95% relative humidity, the humidity sensor displays a highly stable performance along with rapid response and recover time. Utilizing these superior properties, the Ga2O3/liquid metal-based humidity sensor is able to monitor human respiration rate, as well as skin moisture of the palm under different physiological states for healthcare monitoring.
  • 加载中
  • [1] Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5, 5747 (2014). doi: 10.1038/ncomms6747

    CrossRef Google Scholar

    [2] Naqi M, Lee S, Kwon HJ, Lee MG, Kim M et al. A fully integrated flexible heterogeneous temperature and humidity sensor‐based occupancy detection device for smart office applications. Adv Mater Technol 4, 1900619 (2019). doi: 10.1002/admt.201900619

    CrossRef Google Scholar

    [3] Zhang J Q, Gao Y, Li C et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing. Opto-Electron Eng 49, 210316 (2022). doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    [4] Shen YK, Hou SJ, Hao DD, Zhang X, Lu Y et al. Food-based highly sensitive capacitive humidity sensors by inkjet printing for human body monitoring. ACS Appl Electron Mater 3, 4081–4090 (2021). doi: 10.1021/acsaelm.1c00570

    CrossRef Google Scholar

    [5] Guo HY, Lan CY, Zhou ZF, Sun PH, Wei DP et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017). doi: 10.1039/C7NR01016H

    CrossRef Google Scholar

    [6] Lan LY, Le XH, Dong HY, Xie J, Ying YB et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron 165, 112360 (2020). doi: 10.1016/j.bios.2020.112360

    CrossRef Google Scholar

    [7] Lu YY, Xu KC, Zhang LS, Deguchi M, Shishido H et al. Multimodal plant healthcare flexible sensor system. ACS Nano 14, 10966–10975 (2020). doi: 10.1021/acsnano.0c03757

    CrossRef Google Scholar

    [8] Lu YY, Yang G, Shen YJ, Yang HY, Xu KC. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nanomicro Lett 14, 150 (2022).

    Google Scholar

    [9] Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens 2, 828–833 (2017). doi: 10.1021/acssensors.7b00199

    CrossRef Google Scholar

    [10] Peng XY, Chu J, Aldalbahi A, Rivera M, Wang LD et al. A flexible humidity sensor based on KC–MWCNTs composites. Appl Surf Sci 387, 149–154 (2016). doi: 10.1016/j.apsusc.2016.05.108

    CrossRef Google Scholar

    [11] Gu L, Zhou D, Cao JC. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors 16, 833 (2016). doi: 10.3390/s16060833

    CrossRef Google Scholar

    [12] Wu JH, Yin CS, Zhou J, Li HL, Liu Y et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots. ACS Appl Mater Interfaces 12, 39817–39825 (2020). doi: 10.1021/acsami.0c09962

    CrossRef Google Scholar

    [13] Najeeb MA, Ahmad Z, Shakoor RA. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv Mater Interfaces 5, 1800969 (2018). doi: 10.1002/admi.201800969

    CrossRef Google Scholar

    [14] Kim J, Cho JH, Lee HM, Hong SM. Capacitive humidity sensor based on carbon black/polyimide composites. Sensors 21, 1974 (2021). doi: 10.3390/s21061974

    CrossRef Google Scholar

    [15] Duan ZH, Jiang YD, Tai HL. Recent advances in humidity sensors for human body related humidity detection. J Mater Chem C 9, 14963–14980 (2021). doi: 10.1039/D1TC04180K

    CrossRef Google Scholar

    [16] Zhu CC, Tao LQ, Wang Y, Zheng K, Yu JB et al. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem 325, 128790 (2020). doi: 10.1016/j.snb.2020.128790

    CrossRef Google Scholar

    [17] Guan X, Hou ZN, Wu K, Zhao HR, Liu S et al. Flexible humidity sensor based on modified cellulose paper. Sens Actuators B Chem 339, 129879 (2021). doi: 10.1016/j.snb.2021.129879

    CrossRef Google Scholar

    [18] Sriphan S, Charoonsuk T, Khaisaat S, Sawanakarn O, Pharino U et al. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 32, 155502 (2021). doi: 10.1088/1361-6528/abd8ae

    CrossRef Google Scholar

    [19] Velumani M, Meher SR, Alex ZC. Composite metal oxide thin film based impedometric humidity sensors. Sens Actuators B Chem 301, 127084 (2019). doi: 10.1016/j.snb.2019.127084

    CrossRef Google Scholar

    [20] Tang HY, Sacco LN, Vollebregt S, Ye HY, Fan XJ et al. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives. J Mater Chem A 8, 24943–24976 (2020). doi: 10.1039/D0TA08190F

    CrossRef Google Scholar

    [21] Ren J, Guo BJ, Feng Y, Yu K. Few-layer MoS2 dendrites as a highly active humidity sensor. Phys E:Low-Dimens Syst Nanostructures 116, 113782 (2020). doi: 10.1016/j.physe.2019.113782

    CrossRef Google Scholar

    [22] Eryürek M, Tasdemir Z, Karadag Y, Anand S, Kilinc N et al. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sens Actuators B Chem 242, 1115–1120 (2017). doi: 10.1016/j.snb.2016.09.136

    CrossRef Google Scholar

    [23] Sprincean V, Caraman M, Spataru T, Fernandez F, Paladi F. Influence of the air humidity on the electrical conductivity of the β-Ga2O3-GaS structure: air humidity sensor. Appl Phys A 128, 303 (2022). doi: 10.1007/s00339-022-05402-6

    CrossRef Google Scholar

    [24] Wang D, Lou YL, Wang R, Wang PP, Zheng XJ et al. Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder. Ceram Int 41, 14790–14797 (2015). doi: 10.1016/j.ceramint.2015.07.211

    CrossRef Google Scholar

    [25] Tsai TY, Chang SJ, Weng WY, Liu S, Hsu CL et al. β−Ga2O3 nanowires-based humidity sensors prepared on GaN/sapphire substrate. IEEE Sens J 13, 4891–4896 (2013). doi: 10.1109/JSEN.2013.2274872

    CrossRef Google Scholar

    [26] Juan YM, Chang SJ, Hsueh HT, Wang SH, Weng WY et al. Effects of humidity and ultraviolet characteristics on β-Ga2O3 nanowire sensor. RSC Adv 5, 84776–84781 (2015). doi: 10.1039/C5RA16710H

    CrossRef Google Scholar

    [27] Domènech-Gil G, Peiró I, López-Aymerich E, Moreno M, Pellegrino P et al. Room temperature humidity sensor based on single β-Ga2O3 nanowires. Proceedings 2, 958 (2018).

    Google Scholar

    [28] Pilliadugula R, Gopalakrishnan N. Room temperature ammonia sensing performances of pure and Sn doped β-Ga2O3. Mater Sci Semicond Process 135, 106086 (2021). doi: 10.1016/j.mssp.2021.106086

    CrossRef Google Scholar

    [29] Xu KC, Fujita Y, Lu YY, Honda S, Shiomi M et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater 33, 2008701 (2021). doi: 10.1002/adma.202008701

    CrossRef Google Scholar

    [30] Zhang CJ, Li ZK, Li HY, Yang Q, Wang H et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces 14, 38328–38338 (2022). doi: 10.1021/acsami.2c08835

    CrossRef Google Scholar

    [31] Son Y, Yeo J, Moon H, Lim TW, Hong S et al. Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater 23, 3176–3181 (2011). doi: 10.1002/adma.201100717

    CrossRef Google Scholar

    [32] Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055

    CrossRef Google Scholar

    [33] Luo HY, Lu YY, Xu YH, Yang G, Cui SY et al. A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103, 107803 (2022). doi: 10.1016/j.nanoen.2022.107803

    CrossRef Google Scholar

    [34] Hepp M, Wang HZ, Derr K, Delacroix S, Ronneberger S et al. Trained laser-patterned carbon as high-performance mechanical sensors. npj Flex Electron 6, 3 (2022). doi: 10.1038/s41528-022-00136-0

    CrossRef Google Scholar

    [35] Rodriguez RD, Shchadenko S, Murastov G, Lipovka A, Fatkullin M et al. Ultra‐robust flexible electronics by laser‐driven polymer‐nanomaterials integration. Adv Funct Mater 31, 2008818 (2021). doi: 10.1002/adfm.202008818

    CrossRef Google Scholar

    [36] Shin J, Jeong B, Kim J, Nam VB, Yoon Y et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 32, 1905527 (2020). doi: 10.1002/adma.201905527

    CrossRef Google Scholar

    [37] Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021). doi: 10.29026/oea.2021.200061

    CrossRef Google Scholar

    [38] Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics. Opto-Electron Eng 49, 210388 (2022). doi: 10.12086/oee.2022.210388

    CrossRef Google Scholar

    [39] Lu YY, Xu KC, Yang MQ, Tang SY, Yang TY et al. Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz 6, 260–270 (2021). doi: 10.1039/D0NH00594K

    CrossRef Google Scholar

    [40] Liu SL, Yuen MC, White EL, Boley JW, Deng B et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 10, 28232–28241 (2018). doi: 10.1021/acsami.8b08722

    CrossRef Google Scholar

    [41] Liu SL, Reed SN, Higgins MJ, Titus MS, Kramer-Bottiglio R. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Nanoscale 11, 17615–17629 (2019). doi: 10.1039/C9NR03903A

    CrossRef Google Scholar

    [42] Mahapatra PL, Das S, Mondal PP, Das T, Saha D et al. Microporous copper chromite thick film based novel and ultrasensitive capacitive humidity sensor. J Alloys Compd 859, 157778 (2021). doi: 10.1016/j.jallcom.2020.157778

    CrossRef Google Scholar

    [43] Zhang JJ, Sun L, Chen C, Liu M, Dong W et al. High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles. J Alloys Compd 695, 520–525 (2017). doi: 10.1016/j.jallcom.2016.11.129

    CrossRef Google Scholar

    [44] Ma LY, Wu RH, Patil A, Zhu SH, Meng ZH et al. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 29, 1904549 (2019). doi: 10.1002/adfm.201904549

    CrossRef Google Scholar

    [45] Passlack M, Schubert EF, Hobson WS, Hong M, Moriya N et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys 77, 686–693 (1995). doi: 10.1063/1.359055

    CrossRef Google Scholar

    [46] Oshima T, Kaminaga K, Mukai A, Sasaki K, Masui T et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. J Appl Phys 52, 051101 (2013). doi: 10.7567/JJAP.52.051101

    CrossRef Google Scholar

    [47] He J, Zheng XT, Zheng ZW, Kong DG, Ding K et al. Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors. Nano Energy 92, 106748 (2022). doi: 10.1016/j.nanoen.2021.106748

    CrossRef Google Scholar

    [48] Hu GQ, Guan K, Lu LB, Zhang JR, Lu N et al. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering 4, 822–830 (2018). doi: 10.1016/j.eng.2018.09.009

    CrossRef Google Scholar

    [49] Yu YC, Bai S, Wang ST, Hu AM. Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering 4, 779–786 (2018). doi: 10.1016/j.eng.2018.10.004

    CrossRef Google Scholar

    [50] Liu SLZ, Kim SY, Henry KE, Shah DS, Kramer-Bottiglio R. Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions. ACS Appl Mater Interfaces 13, 28729–28736 (2021). doi: 10.1021/acsami.0c23108

    CrossRef Google Scholar

    [51] Liu XH, Zhang DZ, Wang DY, Li TT, Song XS et al. A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J Mater Chem A 9, 14524–14533 (2021). doi: 10.1039/D1TA02828F

    CrossRef Google Scholar

    [52] Heng WZ, Yang G, Kim WS, Xu KC. Emerging wearable flexible sensors for sweat analysis. Biodes Manuf 5, 64–84 (2022). doi: 10.1007/s42242-021-00171-2

    CrossRef Google Scholar

  • Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(5598) PDF downloads(1003) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint