Chen J, Wang DP, Si GY, Teo SL, Wang Q et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141
Citation: Chen J, Wang DP, Si GY, Teo SL, Wang Q et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141

Article Open Access

Planar peristrophic multiplexing metasurfaces

More Information
  • As a promising counterpart of two-dimensional metamaterials, metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices. Nevertheless, the degrees of freedom (DoF) to orthogonally multiplex data have been almost exhausted. Compared with state-of-the-art methods that extensively employ the orthogonal basis such as wavelength, polarization or orbital angular momentum, we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle. The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF. We experimentally demonstrate the viability of the multiplexed holograms. Moreover, this newly-explored orthogonality is compatible with conventional DoFs. Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics, such as large-capacity chip-scale devices and highly integrated communication.
  • 加载中
  • [1] Djordjevic IB, Vasic B. Orthogonal frequency division multiplexing for high-speed optical transmission. Opt Express 14, 3767–3775 (2006). doi: 10.1364/OE.14.003767

    CrossRef Google Scholar

    [2] Elschner R, Richter T, Kato T, Watanabe S, Schubert C. Distributed ultradense optical frequency-division multiplexing using fiber nonlinearity. J Lightwave Technol 31, 628–633 (2013). doi: 10.1109/JLT.2012.2229259

    CrossRef Google Scholar

    [3] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [4] Yang SJ, Allen WE, Kauvar I, Andalman AS, Young NP et al. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt Express 23, 32573–32581 (2015). doi: 10.1364/OE.23.032573

    CrossRef Google Scholar

    [5] Ruffato G, Massari M, Girardi M, Parisi G, Zontini M et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared. Opt Express 27, 24123–24134 (2019). doi: 10.1364/OE.27.024123

    CrossRef Google Scholar

    [6] Denz C, Pauliat G, Roosen G, Tschudi T. Volume hologram multiplexing using a deterministic phase encoding method. Opt Commun 85, 171–176 (1991). doi: 10.1016/0030-4018(91)90389-U

    CrossRef Google Scholar

    [7] Kaur N, Goyal R, Rani M. A review on spectral amplitude coding optical code division multiple access. J Opt Commun 38, 77–85 (2017). doi: 10.1515/joc-2016-0033

    CrossRef Google Scholar

    [8] Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [9] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [10] Genevet P, Yu NF, Aieta F, Lin J, Kats MA et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100, 013101 (2012). doi: 10.1063/1.3673334

    CrossRef Google Scholar

    [11] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [12] Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron Adv 5, 210093 (2022). doi: 10.29026/oea.2022.210093

    CrossRef Google Scholar

    [13] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139

    CrossRef Google Scholar

    [14] Chen HT, Taylor TH, Yu NF. A review of metasurfaces: physics and applications. Rep Prog Phys 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [15] Wang K, Titchener JG, Kruk SS, Xu L, Chung HP et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196

    CrossRef Google Scholar

    [16] Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface. Opto-Electron Eng 49, 220177 (2022). doi: 10.12086/oee.2022.220177

    CrossRef Google Scholar

    [17] Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application. J Lightwave Technol 2, 448–463 (1984). doi: 10.1109/JLT.1984.1073653

    CrossRef Google Scholar

    [18] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029

    CrossRef Google Scholar

    [19] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66–106 (2015). doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [20] Zheng ZH, Zhu SK, Chen Y, Chen HY, Chen JH. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012

    CrossRef Google Scholar

    [21] Ren HR, Fang XY, Jang J, Bürger J, Rho J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [22] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [23] Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [24] Jin L, Dong ZG, Mei ST, Yu YF, Wei Z et al. Noninterleaved metasurface for (26–1) spin-and wavelength-encoded holograms. Nano Lett 18, 8016–8024 (2018). doi: 10.1021/acs.nanolett.8b04246

    CrossRef Google Scholar

    [25] Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127

    CrossRef Google Scholar

    [26] Deng ZL, Jin MK, Ye X, Wang S, Shi T et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater 30, 1910610 (2020). doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [27] Deng ZL, Deng JH, Zhuang X, Wang S, Shi T et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci Appl 7, 78 (2018). doi: 10.1038/s41377-018-0075-0

    CrossRef Google Scholar

    [28] Jang J, Lee GY, Sung J, Lee B. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv Opt Mater 9, 2100678 (2021). doi: 10.1002/adom.202100678

    CrossRef Google Scholar

    [29] Shi YY, Wan CW, Dai CJ, Wang ZJ, Wan S et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev 16, 2100638 (2022). doi: 10.1002/lpor.202100638

    CrossRef Google Scholar

    [30] Ouyang X, Xu Y, Xian MC, Feng ZW, Zhu LW et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat Photonics 15, 901–907 (2021). doi: 10.1038/s41566-021-00880-1

    CrossRef Google Scholar

    [31] Curtis K, Pu A, Psaltis D. Method for holographic storage using peristrophic multiplexing. Opt Lett 19, 993–994 (1994). doi: 10.1364/OL.19.000993

    CrossRef Google Scholar

    [32] Navarro-Fuster V, Ortuño M, Fernández R, Gallego S, Márquez A et al. Peristrophic multiplexed holograms recorded in a low toxicity photopolymer. Opt Mater Express 7, 133–147 (2017). doi: 10.1364/OME.7.000133

    CrossRef Google Scholar

    [33] Coufal HJ, Psaltis D, Sincerbox GT. Holographic Data Storage (Springer, Berlin, 2000).

    Google Scholar

    [34] Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [35] Shamir J, Wagner K. Generalized Bragg selectivity in volume holography. Appl Opt 41, 6773–6785 (2002). doi: 10.1364/AO.41.006773

    CrossRef Google Scholar

    [36] Wei QS, Huang LL, Zhao RZ, Geng GZ, Li JJ et al. Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater 10, 2102166 (2022). doi: 10.1002/adom.202102166

    CrossRef Google Scholar

    [37] Denz C, Dellwig T, Lembcke J, Tschudi T. Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing. Opt Lett 21, 278–280 (1996). doi: 10.1364/OL.21.000278

    CrossRef Google Scholar

    [38] Kozacki T, Finke G, Garbat P, Zaperty W, Kujawińska M. Wide angle holographic display system with spatiotemporal multiplexing. Opt Express 20, 27473–27481 (2012). doi: 10.1364/OE.20.027473

    CrossRef Google Scholar

    [39] Turko NA, Eravuchira PJ, Barnea I, Shaked NT. Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module. Opt Lett 43, 1943–1946 (2018). doi: 10.1364/OL.43.001943

    CrossRef Google Scholar

    [40] Fernández E, García C, Pascual I, Ortuño M, Gallego S et al. Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing. Appl Opt 45, 7661–7666 (2006). doi: 10.1364/AO.45.007661

    CrossRef Google Scholar

    [41] Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk’yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [42] Huang K, Liu H, Si GY, Wang Q, Lin J et al. Photon‐nanosieve for ultrabroadband and large‐angle‐of‐view holograms. Laser Photonics Rev 11, 1700025 (2017). doi: 10.1002/lpor.201700025

    CrossRef Google Scholar

    [43] Jin ZW, Janoschka D, Deng JH, Ge L, Dreher P et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021). doi: 10.1186/s43593-021-00005-9

    CrossRef Google Scholar

    [44] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt 5, 967–969 (1966). doi: 10.1364/AO.5.000967

    CrossRef Google Scholar

    [45] Goodman JW. Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

    Google Scholar

    [46] Hwang HE, Chang HT, Lie WN. Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain. Opt Lett 34, 3917–3919 (2009). doi: 10.1364/OL.34.003917

    CrossRef Google Scholar

    [47] Qu GY, Yang WH, Song QH, Liu YL, Qiu CW et al. Reprogrammable meta-hologram for optical encryption. Nat Commun 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9

    CrossRef Google Scholar

    [48] Mohammed SOH, Zhao D, Azeem SY, Goh X, Tan SJ et al. Efficiency-enhanced reflective nanosieve holograms. Chin Opt Lett 20, 053602 (2022). doi: 10.3788/COL202220.053602

    CrossRef Google Scholar

    [49] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechonl 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [50] Wang DP, Hwang Y, Dai YM, Si GY, Wei SB et al. Broadband high‐efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483

    CrossRef Google Scholar

    [51] Deng ZL, Cao YY, Li XP, Wang GP. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443

    CrossRef Google Scholar

  • Supplementary information for Planar peristrophic multiplexing metasurfaces
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint