Citation: | Chen J, Wang DP, Si GY, Teo SL, Wang Q et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141 |
[1] | Djordjevic IB, Vasic B. Orthogonal frequency division multiplexing for high-speed optical transmission. Opt Express 14, 3767–3775 (2006). doi: 10.1364/OE.14.003767 |
[2] | Elschner R, Richter T, Kato T, Watanabe S, Schubert C. Distributed ultradense optical frequency-division multiplexing using fiber nonlinearity. J Lightwave Technol 31, 628–633 (2013). doi: 10.1109/JLT.2012.2229259 |
[3] | Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94 |
[4] | Yang SJ, Allen WE, Kauvar I, Andalman AS, Young NP et al. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt Express 23, 32573–32581 (2015). doi: 10.1364/OE.23.032573 |
[5] | Ruffato G, Massari M, Girardi M, Parisi G, Zontini M et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared. Opt Express 27, 24123–24134 (2019). doi: 10.1364/OE.27.024123 |
[6] | Denz C, Pauliat G, Roosen G, Tschudi T. Volume hologram multiplexing using a deterministic phase encoding method. Opt Commun 85, 171–176 (1991). doi: 10.1016/0030-4018(91)90389-U |
[7] | Kaur N, Goyal R, Rani M. A review on spectral amplitude coding optical code division multiple access. J Opt Commun 38, 77–85 (2017). doi: 10.1515/joc-2016-0033 |
[8] | Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014 |
[9] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[10] | Genevet P, Yu NF, Aieta F, Lin J, Kats MA et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100, 013101 (2012). doi: 10.1063/1.3673334 |
[11] | Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839 |
[12] | Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron Adv 5, 210093 (2022). doi: 10.29026/oea.2022.210093 |
[13] | Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139 |
[14] | Chen HT, Taylor TH, Yu NF. A review of metasurfaces: physics and applications. Rep Prog Phys 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401 |
[15] | Wang K, Titchener JG, Kruk SS, Xu L, Chung HP et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196 |
[16] | Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface. Opto-Electron Eng 49, 220177 (2022). doi: 10.12086/oee.2022.220177 |
[17] | Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application. J Lightwave Technol 2, 448–463 (1984). doi: 10.1109/JLT.1984.1073653 |
[18] | Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029 |
[19] | Willner AE, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66–106 (2015). doi: 10.1364/AOP.7.000066 |
[20] | Zheng ZH, Zhu SK, Chen Y, Chen HY, Chen JH. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012 |
[21] | Ren HR, Fang XY, Jang J, Bürger J, Rho J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4 |
[22] | Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x |
[23] | Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
[24] | Jin L, Dong ZG, Mei ST, Yu YF, Wei Z et al. Noninterleaved metasurface for (26–1) spin-and wavelength-encoded holograms. Nano Lett 18, 8016–8024 (2018). doi: 10.1021/acs.nanolett.8b04246 |
[25] | Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127 |
[26] | Deng ZL, Jin MK, Ye X, Wang S, Shi T et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater 30, 1910610 (2020). doi: 10.1002/adfm.201910610 |
[27] | Deng ZL, Deng JH, Zhuang X, Wang S, Shi T et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci Appl 7, 78 (2018). doi: 10.1038/s41377-018-0075-0 |
[28] | Jang J, Lee GY, Sung J, Lee B. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv Opt Mater 9, 2100678 (2021). doi: 10.1002/adom.202100678 |
[29] | Shi YY, Wan CW, Dai CJ, Wang ZJ, Wan S et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev 16, 2100638 (2022). doi: 10.1002/lpor.202100638 |
[30] | Ouyang X, Xu Y, Xian MC, Feng ZW, Zhu LW et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat Photonics 15, 901–907 (2021). doi: 10.1038/s41566-021-00880-1 |
[31] | Curtis K, Pu A, Psaltis D. Method for holographic storage using peristrophic multiplexing. Opt Lett 19, 993–994 (1994). doi: 10.1364/OL.19.000993 |
[32] | Navarro-Fuster V, Ortuño M, Fernández R, Gallego S, Márquez A et al. Peristrophic multiplexed holograms recorded in a low toxicity photopolymer. Opt Mater Express 7, 133–147 (2017). doi: 10.1364/OME.7.000133 |
[33] | Coufal HJ, Psaltis D, Sincerbox GT. Holographic Data Storage (Springer, Berlin, 2000). |
[34] | Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[35] | Shamir J, Wagner K. Generalized Bragg selectivity in volume holography. Appl Opt 41, 6773–6785 (2002). doi: 10.1364/AO.41.006773 |
[36] | Wei QS, Huang LL, Zhao RZ, Geng GZ, Li JJ et al. Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater 10, 2102166 (2022). doi: 10.1002/adom.202102166 |
[37] | Denz C, Dellwig T, Lembcke J, Tschudi T. Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing. Opt Lett 21, 278–280 (1996). doi: 10.1364/OL.21.000278 |
[38] | Kozacki T, Finke G, Garbat P, Zaperty W, Kujawińska M. Wide angle holographic display system with spatiotemporal multiplexing. Opt Express 20, 27473–27481 (2012). doi: 10.1364/OE.20.027473 |
[39] | Turko NA, Eravuchira PJ, Barnea I, Shaked NT. Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module. Opt Lett 43, 1943–1946 (2018). doi: 10.1364/OL.43.001943 |
[40] | Fernández E, García C, Pascual I, Ortuño M, Gallego S et al. Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing. Appl Opt 45, 7661–7666 (2006). doi: 10.1364/AO.45.007661 |
[41] | Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk’yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059 |
[42] | Huang K, Liu H, Si GY, Wang Q, Lin J et al. Photon‐nanosieve for ultrabroadband and large‐angle‐of‐view holograms. Laser Photonics Rev 11, 1700025 (2017). doi: 10.1002/lpor.201700025 |
[43] | Jin ZW, Janoschka D, Deng JH, Ge L, Dreher P et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021). doi: 10.1186/s43593-021-00005-9 |
[44] | Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt 5, 967–969 (1966). doi: 10.1364/AO.5.000967 |
[45] | Goodman JW. Introduction to Fourier Optics (McGraw-Hill, New York, 1996). |
[46] | Hwang HE, Chang HT, Lie WN. Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain. Opt Lett 34, 3917–3919 (2009). doi: 10.1364/OL.34.003917 |
[47] | Qu GY, Yang WH, Song QH, Liu YL, Qiu CW et al. Reprogrammable meta-hologram for optical encryption. Nat Commun 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9 |
[48] | Mohammed SOH, Zhao D, Azeem SY, Goh X, Tan SJ et al. Efficiency-enhanced reflective nanosieve holograms. Chin Opt Lett 20, 053602 (2022). doi: 10.3788/COL202220.053602 |
[49] | Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechonl 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[50] | Wang DP, Hwang Y, Dai YM, Si GY, Wei SB et al. Broadband high‐efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483 |
[51] | Deng ZL, Cao YY, Li XP, Wang GP. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443 |
Supplementary information for Planar peristrophic multiplexing metasurfaces |
(a) The principle of the planar peristrophic (or rotation) multiplexed hologram. The holographic metasurface consists of a series of dislocated nanostructures and according to the relative position of adjacent building blocks, arbitrary phase modulation is attainable. When a monochromatic polarization-independent plane wave impinges on the peristrophic metasurface, the multiplexed holograms can be achieved through the spatial orthogonal directions for retrieving the images of “H” and “V” and the twin image diffraction order is blocked. (b) The schematic diagram of the multiplexing condition during the peristrophic process. At a specific rotation angle, there is an optimized spatial frequency range that satisfies the multiplexing condition.
The multiplexing rule of spatial frequency orthogonality. When an addressed incident monochromatic chromatic plane wave with vector kwave satisfies the different threshold hologram conditions, the metasurface is viable to realize the multiplexing through the rotation along the z-axis, which means that a target hologram is encoded with one special spatial frequency of input beam and the other one is encoded with the orthogonal spatial frequency. (a) Schematic diagram of a peristrophic multiplexed metasurface combined the spatial frequency orthogonality with the subwavelength detour phase principle. (b) Spatial frequency multiplexing condition for the hologram in the kx direction (blue area). (c) Spatial frequency multiplexing condition for the hologram in the ky direction (green area). (d) Orthogonal spatial frequency multiplexing relationship.
Experimental setup and results of peristrophic multiplexed holograms. (a) The far-field holographic system including a laser, a linear polarizer, a half-wave plate, two lenses (f1 =50 mm and f2 =50 mm) and a sample on a rotation stage. The holograms are captured by a CCD camera. (b) Top-view scanning electron micrograph photos of the fabricated metasurface (scale bar: 1 µm). (c) Calculated (based on Fourier transform) and the experimental results of the encoded “H” and “V” images. The holographic intensities are detected when the metasurface is rotated along the z-axis in different design ks.
(a) The efficiency of the targeted diffraction order as a function of different linearly polarized angles (0°, 45°, 90°, 135°, 180°). Since the power of the reconstructed images maintains consistently under different linearly polarized angles, the multiplexing method does not depend on the input polarization. (b) The experimental results of holographic images at various polarization directions.
(a) The theoretical analyses of diffracted fields as a function of the spatial frequency and spectrum. (b) The experimental results of multiplexing images at different wavelengths of light (λ=473 nm, 532 nm and 633 nm).