Citation: | Yuan XY, Xu Q, Lang YH, Jiang XH, Xu YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133 |
[1] | Prinz E, Spektor G, Hartelt M, Mahro AK, Aeschlimann M et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett 21, 3941–3946 (2021). doi: 10.1021/acs.nanolett.1c00625 |
[2] | Kim H, Park J, Cho SW, Lee SY, Kang MS et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10, 529–536 (2010). doi: 10.1021/nl903380j |
[3] | Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185 |
[4] | Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161 |
[5] | Tsai WY, Huang JS, Huang CB. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett 14, 547–552 (2014). doi: 10.1021/nl403608a |
[6] | Wang K, Schonbrun E, Steinvurzel P, Crozier KB. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat Commun 2, 469 (2011). doi: 10.1038/ncomms1480 |
[7] | Zhang YQ, Min CJ, Dou XJ, Wang XY, Urbach HP et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl 10, 59 (2021). doi: 10.1038/s41377-021-00474-0 |
[8] | Shen YJ, Wang XJ, Xie ZW, Min CJ, Fu X et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019). doi: 10.1038/s41377-019-0194-2 |
[9] | Zhang YQ, Shi W, Shen Z, Man ZS, Min CJ et al. A plasmonic spanner for metal particle manipulation. Sci Rep 5, 15446 (2015). doi: 10.1038/srep15446 |
[10] | Shen Z, Hu ZJ, Yuan GH, Min CJ, Fang H et al. Visualizing orbital angular momentum of plasmonic vortices. Opt Lett 37, 4627–4629 (2012). doi: 10.1364/OL.37.004627 |
[11] | Quidant R, Girard C. Surface-plasmon-based optical manipulation. Laser Photonics Rev 2, 47–57 (2008). doi: 10.1002/lpor.200710038 |
[12] | Min CJ, Shen Z, Shen JF, Zhang YQ, Fang H et al. Focused plasmonic trapping of metallic particles. Nat Commun 4, 2891 (2013). doi: 10.1038/ncomms3891 |
[13] | Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007). doi: 10.1038/nature06230 |
[14] | Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl 7, 17146 (2018). doi: 10.1038/lsa.2017.146 |
[15] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[16] | Su H, Shen XP, Su GX, Li L, Ding JP et al. Efficient generation of microwave plasmonic vortices via a single deep‐subwavelength meta‐particle. Laser Photonics Rev 12, 1800010 (2018). doi: 10.1002/lpor.201800010 |
[17] | Su GX, Su H, Hu LM, Qin ZF, Shen XP et al. Demonstration of microwave plasmonic-like vortices with tunable topological charges by a single metaparticle. Appl Phys Lett 118, 241106 (2021). doi: 10.1063/5.0053834 |
[18] | Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5 (2022). doi: 10.29026/oea.2022.200098 |
[19] | Pu MB, Guo YH, Li X, Ma XL, Luo XG. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437 |
[20] | Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010 |
[21] | Han YY, Chen PP, Wang M et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface. Opto-Electron Eng 49, 220105 (2022). doi: 10.12086/oee.2022.220105 |
[22] | Hachtel JA, Cho SY, Davidson II RB, Feldman MA, Chisholm MF et al. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light Sci Appl 8, 33 (2019). doi: 10.1038/s41377-019-0136-z |
[23] | Spektor G, Kilbane D, Mahro AK, Hartelt M, Prinz E et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys Rev X 9, 021031 (2019). |
[24] | Chen WB, Abeysinghe DC, Nelson RL, Zhan QW. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10, 2075–2079 (2010). doi: 10.1021/nl100340w |
[25] | Spektor G, Prinz E, Hartelt M, Mahro AK, Aeschlimann M et al. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci Adv 7, eabg5571 (2021). doi: 10.1126/sciadv.abg5571 |
[26] | Zhang YQ, Zeng XY, Ma L, Zhang RR, Zhan ZJ et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv Opt Mater 7, 1900372 (2019). doi: 10.1002/adom.201900372 |
[27] | Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Lett 11, 2038–2042 (2011). doi: 10.1021/nl2004835 |
[28] | Tan QL, Guo QH, Liu HC, Huang XG, Zhang S. Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases. Nanoscale 9, 4944–4949 (2017). doi: 10.1039/C7NR00124J |
[29] | Zang XF, Zhu YM, Mao CX, Xu WW, Ding HZ et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv Opt Mater 7, 1801328 (2019). doi: 10.1002/adom.201801328 |
[30] | Lang YH, Xu Q, Chen XY, Han J, Jiang XH et al. On‐chip plasmonic vortex interferometers. Laser Photonics Rev 16, 2200242 (2022). doi: 10.1002/lpor.202200242 |
[31] | Spektor G, Kilbane D, Mahro AK, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699 |
[32] | Tsai WY, Sun Q, Hu GW, Wu PC, Lin RJ et al. Twisted surface plasmons with spin‐controlled gold surfaces. Adv Opt Mater 7, 1801060 (2019). doi: 10.1002/adom.201801060 |
[33] | Dai YN, Zhou ZK, Ghosh A, Yang SN, Huang CB et al. Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bull 46, 738–746 (2021). doi: 10.1557/s43577-021-00152-x |
[34] | Atsushi K, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7, 470–475 (2007). doi: 10.1021/nl0627846 |
[35] | Lemke C, Schneider C, Leißner T, Bayer D, Radke JW et al. Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices. Nano Lett 13, 1053–1058 (2013). doi: 10.1021/nl3042849 |
[36] | Kahl P, Wall S, Witt C, Schneider C, Bayer D et al. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics 9, 1401–1407 (2014). doi: 10.1007/s11468-014-9756-6 |
[37] | Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1 (2022). doi: 10.29026/oes.2022.210003 |
[38] | Frischwasser K, Cohen K, Kher-Alden J, Dolev S, Tsesses S et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat Photonics 15, 442–448 (2021). doi: 10.1038/s41566-021-00782-2 |
[39] | Hecht B, Sick B, Wild UP, Deckert V, Zenobi R et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J Chem Phys 112, 7761–7774 (2000). doi: 10.1063/1.481382 |
[40] | Polman A, Kociak M, García de Abajo FJ. Electron-beam spectroscopy for nanophotonics. Nat Mater 18, 1158–1171 (2019). doi: 10.1038/s41563-019-0409-1 |
[41] | Piazza L, Lummen TTA, Quiñonez E, Murooka Y, Reed BW et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat Commun 6, 6407 (2015). doi: 10.1038/ncomms7407 |
[42] | Cocker TL, Jelic V, Hillenbrand R, Hegmann FA. Nanoscale terahertz scanning probe microscopy. Nat Photonics 15, 558–569 (2021). |
[43] | Davis TJ, Janoschka D, Dreher P, Frank B, Heringdorf FJMZ et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020). doi: 10.1126/science.aba6415 |
[44] | Moon K, Park H, Kim J, Do Y, Lee S et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett 15, 549–552 (2015). doi: 10.1021/nl503998v |
[45] | Wimmer L, Herink G, Solli DR, Yalunin SV, Echternkamp KE et al. Terahertz control of nanotip photoemission. Nat Phys 10, 432–436 (2014). doi: 10.1038/nphys2974 |
[46] | Wang S, Zhao F, Wang XK, Qu SL, Zhang Y. Comprehensive imaging of terahertz surface plasmon polaritons. Opt Express 22, 16916–16924 (2014). doi: 10.1364/OE.22.016916 |
[47] | Xu YH, Zhang XQ, Tian Z, Gu JQ, Ouyang CM et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Appl Phys Lett 107, 021105 (2015). doi: 10.1063/1.4926967 |
[48] | Zhang XQ, Xu Q, Xia LB, Li YF, Gu JQ et al. Terahertz surface plasmonic waves: a review. Adv Photonics 2, 014001 (2020). |
[49] | Zhang XQ, Xu YH, Yue WS, Tian Z, Gu JQ et al. Anomalous surface wave launching by handedness phase control. Adv Mater 27, 7123–7129 (2015). doi: 10.1002/adma.201502008 |
[50] | Xu Q, Zhang XQ, Xu YH, Ouyang CM, Tian Z et al. Polarization‐controlled surface plasmon holography. Laser Photonics Rev 11, 1600212 (2017). doi: 10.1002/lpor.201600212 |
[51] | Lin J, Mueller JPB, Wang Q, Yuan GH, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746 |
[52] | Teperik TV, Archambault A, Marquier F, Greffet JJ. Huygens-Fresnel principle for surface plasmons. Opt Express 17, 17483–17490 (2009). doi: 10.1364/OE.17.017483 |
[53] | Gorodetski Y, Niv A, Kleiner V, Hasman E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101, 043903 (2008). doi: 10.1103/PhysRevLett.101.043903 |
[54] | David A, Gjonaj B, Blau Y, Dolev S, Bartal G. Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides. Optica 2, 1045–1048 (2015). doi: 10.1364/OPTICA.2.001045 |
[55] | Wächter M, Nagel M, Kurz H. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution. Appl Phys Lett 95, 041112 (2009). doi: 10.1063/1.3189702 |
[56] | Coutaz JL, Garet F, Wallace V. Principles of Terahertz Time-Domain Spectroscopy (Jenny Stanford Publishing, New York, 2018). |
[57] | Wang Z, Li SQ, Zhang XQ, Feng X, Wang QW et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv Sci 7, 2000982 (2020). doi: 10.1002/advs.202000982 |
[58] | Sun WJ, He Q, Sun SL, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 5, e16003 (2016). doi: 10.1038/lsa.2016.3 |
Supplementary information for Tailoring spatiotemporal dynamics of plasmonic vortices | |
Supplemental Videos S1 | |
Supplemental Videos S2 | |
Schematic diagram of the temporal evolution process of plasmonic vortices of the same topological charge generated by different couplers. Sample 1 introduces only the geometric phase through varying the orientation angles of the slit resonators. (a-c) Show the SP intensity fields evolution of the generated plasmonic vortex, from moment t1 when the excited SPs begin to concentrate to the center, with an interval of Δt, where SP fields reach and decay simultaneously at the target orbit. Sample 2 introduces both geometric phase and propagation phase through varying the radial position of slit-pairs. (d-f) Show the SP intensity fields evolution for Sample 2, from moment t2, with an interval of Δt. The height of projection represents the relative intensity of SP field.
Structure scheme of the plasmonic vortex coupler and illustration of numerical calculation. (a) Top views of the plasmonic vortex coupler composed by m slit-pairs arranged in an Archimedean spiral-shape and zoomed-in view of a single slit-pair. (b) Schematics of SPs excited by a single slit resonator orientated by an angle of θ with respect to the x-axis. (c) The component of incident RCP pulse in x direction (the blue line) and y direction (the red line) with a relative time delay Δ. (d) Slit resonators orientated by different angles and their corresponding radiation waveforms. (e) From top to bottom, the orientation angles correspond to 0, π/2 and θ.
Schematics of designed structures and corresponding numerical investigation results. (a, d) Schematics of the plasmonic vortex couplers. The red dotted squares represent the calculated area. (b, e) and (c, f) Show the corresponding SP intensity fields and phase distributions, respectively, in the xy-plane under the RCP incidence. The inset white circles at the top-right corner denote the spin direction of corresponding incidence, similar hereinafter. (g, i) Snapshots of the SP normalized amplitude field distribution in the xy-plane, respectively, of Sample 1 and Sample 2, with a temporal interval of 1 ps. The black dotted circles in (g4–g6) and (i5–i7) represent the target orbits. (h, j) The absolute amplitude value of SPs, which are extracted on the target orbit corresponding to the Bessel radius of fourth-order vortex, in the same temporal dimension with (g, i), respectively. These absolute amplitudes are normalized and the five circles radially outward from the center represent values 0, 0.25, 0.5, 0.75 and 1 in turn, shown in the first picture of (h). The azimuthal angles of the whole circle cover 0 to 2π along the counterclockwise direction.
Schematic diagram of the experiment setup for detecting the vertical component of the SP field Ez. In the transmitter modules, the spilt laser beam is focused onto the photoconductive antenna to excite electron-hole pairs, which are accelerated by the applied bias voltage SWPS (the square wave power supply) and formed transient currents to generate broadband terahertz radiation. CDA, LIA and DAQ represent the current dumping amplifier, the lock-in amplifier and the data acquisition card, respectively. The inset shows the detailed sample progress.
Microscopic images of the plasmonic vortex couplers and experimental results. (a, d) Microscope photos of the fabricated Sample 1 and Sample 2. The red dotted square whose center coincides with the sample center represents the scanned range in our experiment. (b, e) and (c, f) are the measured intensity distributions and phase distributions of the SP fields in the plane at 75 μm above the sample at the air side under the RCP incidence. (g, i) Snapshots of the SP normalized amplitude field distribution in the xy-plane, respectively, of Sample 1 and Sample 2. The black dotted circles in g4–g6 and i5–i7 represent the target orbits. (h, j) The absolute amplitude value of SPs, which are extracted on the target orbit, in the same temporal dimension with (g, i), respectively.