Yuan XY, Xu Q, Lang YH, Jiang XH, Xu YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133
Citation: Yuan XY, Xu Q, Lang YH, Jiang XH, Xu YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133

Article Open Access

Tailoring spatiotemporal dynamics of plasmonic vortices

More Information
  • Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade. Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices, providing a better understanding of optical orbital angular momentums in the evanescent wave regime. However, these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications. Herein, it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design. Based on a near-field scanning terahertz microscopy, the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution, experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices. The proposed strategy is straightforward and universal, which can be readily applied into visible or infrared frequencies, facilitating the development of plasmonic vortex related researches and applications.
  • 加载中
  • [1] Prinz E, Spektor G, Hartelt M, Mahro AK, Aeschlimann M et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett 21, 3941–3946 (2021). doi: 10.1021/acs.nanolett.1c00625

    CrossRef Google Scholar

    [2] Kim H, Park J, Cho SW, Lee SY, Kang MS et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10, 529–536 (2010). doi: 10.1021/nl903380j

    CrossRef Google Scholar

    [3] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [4] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [5] Tsai WY, Huang JS, Huang CB. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett 14, 547–552 (2014). doi: 10.1021/nl403608a

    CrossRef Google Scholar

    [6] Wang K, Schonbrun E, Steinvurzel P, Crozier KB. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat Commun 2, 469 (2011). doi: 10.1038/ncomms1480

    CrossRef Google Scholar

    [7] Zhang YQ, Min CJ, Dou XJ, Wang XY, Urbach HP et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl 10, 59 (2021). doi: 10.1038/s41377-021-00474-0

    CrossRef Google Scholar

    [8] Shen YJ, Wang XJ, Xie ZW, Min CJ, Fu X et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019). doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [9] Zhang YQ, Shi W, Shen Z, Man ZS, Min CJ et al. A plasmonic spanner for metal particle manipulation. Sci Rep 5, 15446 (2015). doi: 10.1038/srep15446

    CrossRef Google Scholar

    [10] Shen Z, Hu ZJ, Yuan GH, Min CJ, Fang H et al. Visualizing orbital angular momentum of plasmonic vortices. Opt Lett 37, 4627–4629 (2012). doi: 10.1364/OL.37.004627

    CrossRef Google Scholar

    [11] Quidant R, Girard C. Surface-plasmon-based optical manipulation. Laser Photonics Rev 2, 47–57 (2008). doi: 10.1002/lpor.200710038

    CrossRef Google Scholar

    [12] Min CJ, Shen Z, Shen JF, Zhang YQ, Fang H et al. Focused plasmonic trapping of metallic particles. Nat Commun 4, 2891 (2013). doi: 10.1038/ncomms3891

    CrossRef Google Scholar

    [13] Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007). doi: 10.1038/nature06230

    CrossRef Google Scholar

    [14] Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl 7, 17146 (2018). doi: 10.1038/lsa.2017.146

    CrossRef Google Scholar

    [15] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [16] Su H, Shen XP, Su GX, Li L, Ding JP et al. Efficient generation of microwave plasmonic vortices via a single deep‐subwavelength meta‐particle. Laser Photonics Rev 12, 1800010 (2018). doi: 10.1002/lpor.201800010

    CrossRef Google Scholar

    [17] Su GX, Su H, Hu LM, Qin ZF, Shen XP et al. Demonstration of microwave plasmonic-like vortices with tunable topological charges by a single metaparticle. Appl Phys Lett 118, 241106 (2021). doi: 10.1063/5.0053834

    CrossRef Google Scholar

    [18] Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [19] Pu MB, Guo YH, Li X, Ma XL, Luo XG. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [20] Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010

    CrossRef Google Scholar

    [21] Han YY, Chen PP, Wang M et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface. Opto-Electron Eng 49, 220105 (2022). doi: 10.12086/oee.2022.220105

    CrossRef Google Scholar

    [22] Hachtel JA, Cho SY, Davidson II RB, Feldman MA, Chisholm MF et al. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light Sci Appl 8, 33 (2019). doi: 10.1038/s41377-019-0136-z

    CrossRef Google Scholar

    [23] Spektor G, Kilbane D, Mahro AK, Hartelt M, Prinz E et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys Rev X 9, 021031 (2019).

    Google Scholar

    [24] Chen WB, Abeysinghe DC, Nelson RL, Zhan QW. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10, 2075–2079 (2010). doi: 10.1021/nl100340w

    CrossRef Google Scholar

    [25] Spektor G, Prinz E, Hartelt M, Mahro AK, Aeschlimann M et al. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci Adv 7, eabg5571 (2021). doi: 10.1126/sciadv.abg5571

    CrossRef Google Scholar

    [26] Zhang YQ, Zeng XY, Ma L, Zhang RR, Zhan ZJ et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv Opt Mater 7, 1900372 (2019). doi: 10.1002/adom.201900372

    CrossRef Google Scholar

    [27] Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Lett 11, 2038–2042 (2011). doi: 10.1021/nl2004835

    CrossRef Google Scholar

    [28] Tan QL, Guo QH, Liu HC, Huang XG, Zhang S. Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases. Nanoscale 9, 4944–4949 (2017). doi: 10.1039/C7NR00124J

    CrossRef Google Scholar

    [29] Zang XF, Zhu YM, Mao CX, Xu WW, Ding HZ et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv Opt Mater 7, 1801328 (2019). doi: 10.1002/adom.201801328

    CrossRef Google Scholar

    [30] Lang YH, Xu Q, Chen XY, Han J, Jiang XH et al. On‐chip plasmonic vortex interferometers. Laser Photonics Rev 16, 2200242 (2022). doi: 10.1002/lpor.202200242

    CrossRef Google Scholar

    [31] Spektor G, Kilbane D, Mahro AK, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699

    CrossRef Google Scholar

    [32] Tsai WY, Sun Q, Hu GW, Wu PC, Lin RJ et al. Twisted surface plasmons with spin‐controlled gold surfaces. Adv Opt Mater 7, 1801060 (2019). doi: 10.1002/adom.201801060

    CrossRef Google Scholar

    [33] Dai YN, Zhou ZK, Ghosh A, Yang SN, Huang CB et al. Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bull 46, 738–746 (2021). doi: 10.1557/s43577-021-00152-x

    CrossRef Google Scholar

    [34] Atsushi K, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7, 470–475 (2007). doi: 10.1021/nl0627846

    CrossRef Google Scholar

    [35] Lemke C, Schneider C, Leißner T, Bayer D, Radke JW et al. Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices. Nano Lett 13, 1053–1058 (2013). doi: 10.1021/nl3042849

    CrossRef Google Scholar

    [36] Kahl P, Wall S, Witt C, Schneider C, Bayer D et al. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics 9, 1401–1407 (2014). doi: 10.1007/s11468-014-9756-6

    CrossRef Google Scholar

    [37] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1 (2022). doi: 10.29026/oes.2022.210003

    CrossRef Google Scholar

    [38] Frischwasser K, Cohen K, Kher-Alden J, Dolev S, Tsesses S et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat Photonics 15, 442–448 (2021). doi: 10.1038/s41566-021-00782-2

    CrossRef Google Scholar

    [39] Hecht B, Sick B, Wild UP, Deckert V, Zenobi R et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J Chem Phys 112, 7761–7774 (2000). doi: 10.1063/1.481382

    CrossRef Google Scholar

    [40] Polman A, Kociak M, García de Abajo FJ. Electron-beam spectroscopy for nanophotonics. Nat Mater 18, 1158–1171 (2019). doi: 10.1038/s41563-019-0409-1

    CrossRef Google Scholar

    [41] Piazza L, Lummen TTA, Quiñonez E, Murooka Y, Reed BW et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat Commun 6, 6407 (2015). doi: 10.1038/ncomms7407

    CrossRef Google Scholar

    [42] Cocker TL, Jelic V, Hillenbrand R, Hegmann FA. Nanoscale terahertz scanning probe microscopy. Nat Photonics 15, 558–569 (2021).

    Google Scholar

    [43] Davis TJ, Janoschka D, Dreher P, Frank B, Heringdorf FJMZ et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020). doi: 10.1126/science.aba6415

    CrossRef Google Scholar

    [44] Moon K, Park H, Kim J, Do Y, Lee S et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett 15, 549–552 (2015). doi: 10.1021/nl503998v

    CrossRef Google Scholar

    [45] Wimmer L, Herink G, Solli DR, Yalunin SV, Echternkamp KE et al. Terahertz control of nanotip photoemission. Nat Phys 10, 432–436 (2014). doi: 10.1038/nphys2974

    CrossRef Google Scholar

    [46] Wang S, Zhao F, Wang XK, Qu SL, Zhang Y. Comprehensive imaging of terahertz surface plasmon polaritons. Opt Express 22, 16916–16924 (2014). doi: 10.1364/OE.22.016916

    CrossRef Google Scholar

    [47] Xu YH, Zhang XQ, Tian Z, Gu JQ, Ouyang CM et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Appl Phys Lett 107, 021105 (2015). doi: 10.1063/1.4926967

    CrossRef Google Scholar

    [48] Zhang XQ, Xu Q, Xia LB, Li YF, Gu JQ et al. Terahertz surface plasmonic waves: a review. Adv Photonics 2, 014001 (2020).

    Google Scholar

    [49] Zhang XQ, Xu YH, Yue WS, Tian Z, Gu JQ et al. Anomalous surface wave launching by handedness phase control. Adv Mater 27, 7123–7129 (2015). doi: 10.1002/adma.201502008

    CrossRef Google Scholar

    [50] Xu Q, Zhang XQ, Xu YH, Ouyang CM, Tian Z et al. Polarization‐controlled surface plasmon holography. Laser Photonics Rev 11, 1600212 (2017). doi: 10.1002/lpor.201600212

    CrossRef Google Scholar

    [51] Lin J, Mueller JPB, Wang Q, Yuan GH, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746

    CrossRef Google Scholar

    [52] Teperik TV, Archambault A, Marquier F, Greffet JJ. Huygens-Fresnel principle for surface plasmons. Opt Express 17, 17483–17490 (2009). doi: 10.1364/OE.17.017483

    CrossRef Google Scholar

    [53] Gorodetski Y, Niv A, Kleiner V, Hasman E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101, 043903 (2008). doi: 10.1103/PhysRevLett.101.043903

    CrossRef Google Scholar

    [54] David A, Gjonaj B, Blau Y, Dolev S, Bartal G. Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides. Optica 2, 1045–1048 (2015). doi: 10.1364/OPTICA.2.001045

    CrossRef Google Scholar

    [55] Wächter M, Nagel M, Kurz H. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution. Appl Phys Lett 95, 041112 (2009). doi: 10.1063/1.3189702

    CrossRef Google Scholar

    [56] Coutaz JL, Garet F, Wallace V. Principles of Terahertz Time-Domain Spectroscopy (Jenny Stanford Publishing, New York, 2018).

    Google Scholar

    [57] Wang Z, Li SQ, Zhang XQ, Feng X, Wang QW et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv Sci 7, 2000982 (2020). doi: 10.1002/advs.202000982

    CrossRef Google Scholar

    [58] Sun WJ, He Q, Sun SL, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 5, e16003 (2016). doi: 10.1038/lsa.2016.3

    CrossRef Google Scholar

  • Supplementary information for Tailoring spatiotemporal dynamics of plasmonic vortices
    Supplemental Videos S1
    Supplemental Videos S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(10672) PDF downloads(774) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint