Wu ST, Yang ZC, Ma CG, Zhang X, Mi C et al. Deep learning enhanced NIR-II volumetric imaging of whole mice vasculature. Opto-Electron Adv 6, 220105 (2023). doi: 10.29026/oea.2023.220105
Citation: Wu ST, Yang ZC, Ma CG, Zhang X, Mi C et al. Deep learning enhanced NIR-II volumetric imaging of whole mice vasculature. Opto-Electron Adv 6, 220105 (2023). doi: 10.29026/oea.2023.220105

Article Open Access

Deep learning enhanced NIR-II volumetric imaging of whole mice vasculature

More Information
  • Fluorescence imaging through the second near-infrared window (NIR-II,1000–1700 nm) allows in-depth imaging. However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information, without depth resolution. Here, we systematically apply a light-sheet illumination, a time-gated detection, and a deep-learning algorithm to yield high-contrast high-resolution volumetric images. To achieve a large FoV (field of view) and minimize the scattering effect, we generate a light sheet as thin as 100.5 μm with a Rayleigh length of 8 mm to yield an axial resolution of 220 µm. To further suppress the background, we time-gate to only detect long lifetime luminescence achieving a high contrast of up to 0.45 Ιcontrast. To enhance the resolution, we develop an algorithm based on profile protrusions detection and a deep neural network and distinguish vasculature from a low-contrast area of 0.07 Ιcontrast to resolve the 100 μm small vessels. The system can rapidly scan a volume of view of 75 × 55 × 20 mm3 and collect 750 images within 6 mins. By adding a scattering-based modality to acquire the 3D surface profile of the mice skin, we reveal the whole volumetric vasculature network with clear depth resolution within more than 1 mm from the skin. High-contrast large-scale 3D animal imaging helps us expand a new dimension in NIR-II imaging.
  • 加载中
  • [1] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13, 195–208 (2003). doi: 10.1007/s00330-002-1524-x

    CrossRef Google Scholar

    [2] Li BH, Zhao MY, Feng LS, Dou CR, Ding SW et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun 11, 3102 (2020). doi: 10.1038/s41467-020-16924-z

    CrossRef Google Scholar

    [3] Zhu XY, Liu X, Zhang HX, Zhao MY, Pei P et al. High‐fidelity NIR‐II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles. Angew Chem Int Ed 60, 23545–23551 (2021). doi: 10.1002/anie.202108124

    CrossRef Google Scholar

    [4] Du HT, Wan H, Dai HJ. Recent advances in development of NIR-II fluorescent agents. In Benayas A, Hemmer E, Hong GS, Jaque D. Near Infrared-Emitting Nanoparticles for Biomedical Applications 83–101 (Springer, 2020);http://doi.org/10.1007/978-3-030-32036-2_5.

    Google Scholar

    [5] Welsher K, Sherlock SP, Dai HJ. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci USA 108, 8943–8948 (2011). doi: 10.1073/pnas.1014501108

    CrossRef Google Scholar

    [6] Hong GS, Lee JC, Robinson JT, Raaz U, Xie LM et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18, 1841–1846 (2012). doi: 10.1038/nm.2995

    CrossRef Google Scholar

    [7] Hong GS, Diao S, Chang JL, Antaris AL, Chen CX et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8, 723–730 (2014). doi: 10.1038/nphoton.2014.166

    CrossRef Google Scholar

    [8] Yu WB, Guo B, Zhang HQ, Zhou J, Yu XM et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci Bull 64, 410–416 (2019). doi: 10.1016/j.scib.2019.02.019

    CrossRef Google Scholar

    [9] Liu YF, Gou HL, Huang X, Zhang GY, Xi K et al. Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale 12, 1589–1601 (2020). doi: 10.1039/C9NR09524A

    CrossRef Google Scholar

    [10] Wang FF, Ma ZR, Zhong YT, Salazar F, Xu C et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc Natl Acad Sci USA 118, e2023888118 (2021). doi: 10.1073/pnas.2023888118

    CrossRef Google Scholar

    [11] Lu LF, Li BH, Ding SW, Fan Y, Wang SF et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat Commun 11, 4192 (2020). doi: 10.1038/s41467-020-18051-1

    CrossRef Google Scholar

    [12] Liao JL, Yin YX, Yu J, Zhang RL, Wu T et al. Depth-resolved NIR-II fluorescence mesoscope. Biomed Opt Express 11, 2366–2372 (2020). doi: 10.1364/BOE.386692

    CrossRef Google Scholar

    [13] Wang FF, Wan H, Ma ZR, Zhong YT, Sun QC et al. Light-sheet microscopy in the near-infrared II window. Nat Methods 16, 545–552 (2019). doi: 10.1038/s41592-019-0398-7

    CrossRef Google Scholar

    [14] Girkin JM, Carvalho MT. The light-sheet microscopy revolution. J Opt 20, 053002 (2018). doi: 10.1088/2040-8986/aab58a

    CrossRef Google Scholar

    [15] Pampaloni F, Ansari N, Girard P, Stelzer EHK. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects and provides new means for the modern life sciences. Proc SPIE 8086, 80860Y (2011). doi: 10.1117/12.889443

    CrossRef Google Scholar

    [16] Jin DY, Piper JA. Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. Anal Chem 83, 2294–2300 (2011). doi: 10.1021/ac103207r

    CrossRef Google Scholar

    [17] Zheng XL, Zhu XJ, Lu YQ, Zhao JB, Feng W et al. High-contrast visualization of upconversion luminescence in mice using time-gating approach. Anal Chem 88, 3449–3454 (2016). doi: 10.1021/acs.analchem.5b04626

    CrossRef Google Scholar

    [18] Ortgies DH, Tan ML, Ximendes EC, del Rosal B, Hu J et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12, 4362–4368 (2018). doi: 10.1021/acsnano.7b09189

    CrossRef Google Scholar

    [19] Nimmegeers B, Cosaert E, Carbonati T, Meroni D, Poelman D. Synthesis and characterization of GdVO4: Nd near-infrared phosphors for optical time-gated in vivo imaging. Materials 13, 3564 (2020). doi: 10.3390/ma13163564

    CrossRef Google Scholar

    [20] Morimoto K, Ardelean A, Wu ML, Ulku AC, Antolovic IMM et al. Megapixel time-gated SPAD image sensor for scientific imaging applications. Proc SPIE 11654, 116540U (2021). doi: 10.1117/12.2582444

    CrossRef Google Scholar

    [21] Connally RE, Piper JA. Time‐gated luminescence microscopy. Ann N Y Acad Sci 1130, 106–116 (2008). doi: 10.1196/annals.1430.032

    CrossRef Google Scholar

    [22] Cubeddu R, Comelli D, D'Andrea C, Taroni P, Valentini G. Time-resolved fluorescence imaging in biology and medicine. J Phys D Appl Phys 35, R61–R76 (2002). doi: 10.1088/0022-3727/35/9/201

    CrossRef Google Scholar

    [23] Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J 60, 1374–1387 (1991). doi: 10.1016/S0006-3495(91)82175-0

    CrossRef Google Scholar

    [24] Cheng SM, Shen B, Yuan W, Zhou XB, Liu QY et al. Time-gated ratiometric detection with the same working wavelength to minimize the interferences from photon attenuation for accurate in vivo detection. ACS Cent Sci 5, 299–307 (2019). doi: 10.1021/acscentsci.8b00763

    CrossRef Google Scholar

    [25] Yin XX, Ng BWH, He J, Zhang YC, Abbott D. Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS One 9, e95943 (2014). doi: 10.1371/journal.pone.0095943

    CrossRef Google Scholar

    [26] Christensen KA, Morris MD. Hyperspectral Raman microscopic imaging using Powell lens line illumination. Appl Spectrosc 52, 1145–1147 (1998). doi: 10.1366/0003702981945138

    CrossRef Google Scholar

    [27] Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T et al. DenseNet: implementing efficient convnet descriptor pyramids. arXiv: 1404.1869 (2014).

    Google Scholar

    [28] Vogt N. Hybrid volumetric calcium imaging. Nat Methods 16, 461 (2019). doi: 10.1038/s41592-019-0442-7

    CrossRef Google Scholar

    [29] Yamauchi K, Yang M, Jiang P, Xu MX, Yamamoto N et al. Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66, 4208–4214 (2006). doi: 10.1158/0008-5472.CAN-05-3927

    CrossRef Google Scholar

    [30] Ulyanov SS, Ganilova YA. Speckle-microscopy for blood flow measurements in the smallest microvessel. Proc SPIE 5139, 206–215 (2003). doi: 10.1117/12.500259

    CrossRef Google Scholar

    [31] Chao M, Ming G, Xun Z, Liu Y, Sitong W et al. High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mic. Nano Lett 22, 2793–2800 (2022). doi: 10.1021/acs.nanolett.1c04909

    CrossRef Google Scholar

    [32] Feng Z, Tang T, Wu TX, Yu XM, Zhang YH et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl 10, 197 (2021). doi: 10.1038/s41377-021-00628-0

    CrossRef Google Scholar

  • Supplementary information for Deep learning enhanced NIR-II volumetric imaging of whole mice vasculature
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(5681) PDF downloads(843) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint