Jiang SL, Chen FF, Zhao Y, Gao SF, Wang YY et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085
Citation: Jiang SL, Chen FF, Zhao Y, Gao SF, Wang YY et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085

Article Open Access

Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber

More Information
  • We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber. The phase modulation dynamics are studied by multi-physics simulation. A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling. It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm. The rise and fall time constants are 3.5 and 3.7 μs, respectively, 2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators. The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
  • 加载中
  • [1] Sturm C, Tanese D, Nguyen HS, Flayac H, Galopin E et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat Commun 5, 3278 (2014). doi: 10.1038/ncomms4278

    CrossRef Google Scholar

    [2] Li MW, Yu Y, Lu Y, Hu XY, Wang YR et al. Optical microfiber all-optical phase modulator for fiber optic hydrophone. Nanomaterials 11, 2215 (2021). doi: 10.3390/nano11092215

    CrossRef Google Scholar

    [3] Loayssa A, Lahoz FJ. Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technol Lett 18, 208–210 (2006). doi: 10.1109/LPT.2005.861307

    CrossRef Google Scholar

    [4] Sharping JE, Fiorentino M, Kumar P, Windeler RS. All-optical switching based on cross-phase modulation in microstructure fiber. IEEE Photonics Technol Lett 14, 77–79 (2002). doi: 10.1109/68.974167

    CrossRef Google Scholar

    [5] Yu SL, Wu XQ, Chen KR, Chen BG, Guo X et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541–544 (2016). doi: 10.1364/OPTICA.3.000541

    CrossRef Google Scholar

    [6] Qiu CY, Yang YX, Li C, Wang YF, Wu K et al. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 7, 17046 (2017). doi: 10.1038/s41598-017-16989-9

    CrossRef Google Scholar

    [7] Cheng Z, Cao R, Guo J, Yao YH, Wei KK et al. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 9, 1973–1979 (2020). doi: 10.1515/nanoph-2019-0510

    CrossRef Google Scholar

    [8] Gan XT, Zhao CY, Wang YD, Mao D, Fang L et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015). doi: 10.1364/OPTICA.2.000468

    CrossRef Google Scholar

    [9] Wu K, Wang YF, Qiu CY, Chen JP. Thermo-optic all-optical devices based on two-dimensional materials. Photonics Res 6, C22–C28 (2018). doi: 10.1364/PRJ.6.000C22

    CrossRef Google Scholar

    [10] Wang YZ, Zhang F, Tang X, Chen X, Chen YX et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev 12, 1800016 (2018). doi: 10.1002/lpor.201800016

    CrossRef Google Scholar

    [11] Wang YZ, Huang WC, Zhao JL, Huang H, Wang C et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J Mater Chem C 7, 871–878 (2019). doi: 10.1039/C8TC05513K

    CrossRef Google Scholar

    [12] Guo QB, Wu K, Shao ZP, Basore ET, Jiang P et al. Boron nanosheets for efficient all-optical modulation and logic operation. Adv Opt Mater 7, 1900322 (2019). doi: 10.1002/adom.201900322

    CrossRef Google Scholar

    [13] Wang C, Chen QY, Chen HL, Liu J, Song YF et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021). doi: 10.29026/oea.2021.200032

    CrossRef Google Scholar

    [14] Gao SF, Wang YY, Ding W, Hong YF, Wang P. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photonics Rev 14, 1900241 (2020). doi: 10.1002/lpor.201900241

    CrossRef Google Scholar

    [15] Cassataro M, Novoa D, Günendi MC, Edavalath NN, Frosz MH et al. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt Express 25, 7637–7644 (2017). doi: 10.1364/OE.25.007637

    CrossRef Google Scholar

    [16] Sakr H, Hong Y, Bradley TD, Jasion GT, Hayes JR et al. Interband short reach data transmission in ultrawide bandwidth hollow core fiber. J Lightwave Technol 38, 159–165 (2020). doi: 10.1109/JLT.2019.2943178

    CrossRef Google Scholar

    [17] Zhang Z, Ding W, Jia AQ, Hong YF, Chen Y et al. Connector-style hollow-core fiber interconnections. Opt Express 30, 15149–15157 (2022). doi: 10.1364/OE.456392

    CrossRef Google Scholar

    [18] Suslov D, Komanec M, Fokoua ERN, Dousek D, Zhong AL et al. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. Sci Rep 11, 8799 (2021). doi: 10.1038/s41598-021-88065-2

    CrossRef Google Scholar

    [19] Jin W, Cao YC, Yang F, Ho HL. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat Commun 6, 6767 (2015). doi: 10.1038/ncomms7767

    CrossRef Google Scholar

    [20] Zhao Y, Qi Y, Ho HL, Gao SF, Wang YY et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers. Optica 8, 532–538 (2021). doi: 10.1364/OPTICA.417235

    CrossRef Google Scholar

    [21] Wang JCF, Springer GS. Vibrational relaxation times in some hydrocarbons in the range 300–900°K. J Chem Phys 59, 6556–6562 (1973). doi: 10.1063/1.1680034

    CrossRef Google Scholar

    [22] Gordon IE, Rothman LS, Hill C, Kocharov RV, Tan Y et al. The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 203, 3–69 (2017). doi: 10.1016/j.jqsrt.2017.06.038

    CrossRef Google Scholar

    [23] Bialkowski SE. Photothermal Spectroscopy Methods for Chemical Analysis (John Wiley & Sons, New York, 1996).

    Google Scholar

    [24] Batchelor GK. An Introduction to Fluid Dynamics (Cambridge University Press, New York, 2000).

    Google Scholar

    [25] Weber MJ. Handbook of Optical Materials (CRC Press, Boca Raton, 2018).

    Google Scholar

    [26] Lide DR. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, 2004).

    Google Scholar

    [27] Owens JC. Optical refractive index of air: dependence on pressure, temperature and composition. Appl Opt 6, 51–59 (1967). doi: 10.1364/AO.6.000051

    CrossRef Google Scholar

    [28] Jin W, Uttamchandani D, Culshaw B. Direct readout of dynamic phase changes in a fiber-optic homodyne interferometer. Appl Opt 31, 7253–7258 (1992). doi: 10.1364/AO.31.007253

    CrossRef Google Scholar

    [29] Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(5309) PDF downloads(826) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint