Citation: | Jiang SL, Chen FF, Zhao Y, Gao SF, Wang YY et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron Adv 6, 220085 (2023). doi: 10.29026/oea.2023.220085 |
[1] | Sturm C, Tanese D, Nguyen HS, Flayac H, Galopin E et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat Commun 5, 3278 (2014). doi: 10.1038/ncomms4278 |
[2] | Li MW, Yu Y, Lu Y, Hu XY, Wang YR et al. Optical microfiber all-optical phase modulator for fiber optic hydrophone. Nanomaterials 11, 2215 (2021). doi: 10.3390/nano11092215 |
[3] | Loayssa A, Lahoz FJ. Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technol Lett 18, 208–210 (2006). doi: 10.1109/LPT.2005.861307 |
[4] | Sharping JE, Fiorentino M, Kumar P, Windeler RS. All-optical switching based on cross-phase modulation in microstructure fiber. IEEE Photonics Technol Lett 14, 77–79 (2002). doi: 10.1109/68.974167 |
[5] | Yu SL, Wu XQ, Chen KR, Chen BG, Guo X et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541–544 (2016). doi: 10.1364/OPTICA.3.000541 |
[6] | Qiu CY, Yang YX, Li C, Wang YF, Wu K et al. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 7, 17046 (2017). doi: 10.1038/s41598-017-16989-9 |
[7] | Cheng Z, Cao R, Guo J, Yao YH, Wei KK et al. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 9, 1973–1979 (2020). doi: 10.1515/nanoph-2019-0510 |
[8] | Gan XT, Zhao CY, Wang YD, Mao D, Fang L et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015). doi: 10.1364/OPTICA.2.000468 |
[9] | Wu K, Wang YF, Qiu CY, Chen JP. Thermo-optic all-optical devices based on two-dimensional materials. Photonics Res 6, C22–C28 (2018). doi: 10.1364/PRJ.6.000C22 |
[10] | Wang YZ, Zhang F, Tang X, Chen X, Chen YX et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev 12, 1800016 (2018). doi: 10.1002/lpor.201800016 |
[11] | Wang YZ, Huang WC, Zhao JL, Huang H, Wang C et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J Mater Chem C 7, 871–878 (2019). doi: 10.1039/C8TC05513K |
[12] | Guo QB, Wu K, Shao ZP, Basore ET, Jiang P et al. Boron nanosheets for efficient all-optical modulation and logic operation. Adv Opt Mater 7, 1900322 (2019). doi: 10.1002/adom.201900322 |
[13] | Wang C, Chen QY, Chen HL, Liu J, Song YF et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021). doi: 10.29026/oea.2021.200032 |
[14] | Gao SF, Wang YY, Ding W, Hong YF, Wang P. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photonics Rev 14, 1900241 (2020). doi: 10.1002/lpor.201900241 |
[15] | Cassataro M, Novoa D, Günendi MC, Edavalath NN, Frosz MH et al. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt Express 25, 7637–7644 (2017). doi: 10.1364/OE.25.007637 |
[16] | Sakr H, Hong Y, Bradley TD, Jasion GT, Hayes JR et al. Interband short reach data transmission in ultrawide bandwidth hollow core fiber. J Lightwave Technol 38, 159–165 (2020). doi: 10.1109/JLT.2019.2943178 |
[17] | Zhang Z, Ding W, Jia AQ, Hong YF, Chen Y et al. Connector-style hollow-core fiber interconnections. Opt Express 30, 15149–15157 (2022). doi: 10.1364/OE.456392 |
[18] | Suslov D, Komanec M, Fokoua ERN, Dousek D, Zhong AL et al. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber. Sci Rep 11, 8799 (2021). doi: 10.1038/s41598-021-88065-2 |
[19] | Jin W, Cao YC, Yang F, Ho HL. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat Commun 6, 6767 (2015). doi: 10.1038/ncomms7767 |
[20] | Zhao Y, Qi Y, Ho HL, Gao SF, Wang YY et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers. Optica 8, 532–538 (2021). doi: 10.1364/OPTICA.417235 |
[21] | Wang JCF, Springer GS. Vibrational relaxation times in some hydrocarbons in the range 300–900°K. J Chem Phys 59, 6556–6562 (1973). doi: 10.1063/1.1680034 |
[22] | Gordon IE, Rothman LS, Hill C, Kocharov RV, Tan Y et al. The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 203, 3–69 (2017). doi: 10.1016/j.jqsrt.2017.06.038 |
[23] | Bialkowski SE. Photothermal Spectroscopy Methods for Chemical Analysis (John Wiley & Sons, New York, 1996). |
[24] | Batchelor GK. An Introduction to Fluid Dynamics (Cambridge University Press, New York, 2000). |
[25] | Weber MJ. Handbook of Optical Materials (CRC Press, Boca Raton, 2018). |
[26] | Lide DR. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, 2004). |
[27] | Owens JC. Optical refractive index of air: dependence on pressure, temperature and composition. Appl Opt 6, 51–59 (1967). doi: 10.1364/AO.6.000051 |
[28] | Jin W, Uttamchandani D, Culshaw B. Direct readout of dynamic phase changes in a fiber-optic homodyne interferometer. Appl Opt 31, 7253–7258 (1992). doi: 10.1364/AO.31.007253 |
[29] | Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076 |
(a) Schematic showing the principle of HCF-based PT phase modulator. (b) Calculated absorption coefficient of the P(9) line of pure C2H2 at 1 atm as a function of T by use of HITRAN database22. (c) Transverse distribution of T and p calculated by using COMSOL Multiphysics with Pctrl=500 mW and f=100 kHz. (d) Variation of local phase modulation with a step length of 1 mm and accumulated phase modulation along the length of an acetylene-filled HCF.
(a) Schematic diagram and (b) photo of the fabricated gas-filled hollow-core fiber phase modulator. (c) Measured loss spectrum of the phase modulator. (d) Experimental setup for characterizing the phase modulator. TECF: thermal-expanded core fiber, DFB: distributed feedback laser, FG: function generator, AOM: acoustic optical modulator, EDFA: erbium-doped fiber amplifier, WDM: wavelength-division multiplexer, PZT: piezoelectric transducer, PC: polarization controller, PD: photodetector, OSC: oscilloscope, LPF: low-pass filter.
Characteristics of the HCF-based PT phase modulator with a modulation frequency of 100 kHz. (a) MZI output waveforms with different Pctrl in the AR-HCF. (b) Phase modulation amplitude as a function of Pctrl. (c) Wavelength dependence of phase modulation amplitude for Pctrl=502 mW.
(a) Frequency response of phase modulation with Pctrl =502 mW. (b) Transient response detected by use of the MZI for control light beam pulse width of 50 μs.