Huang YJ, Xiao TX, Chen S, Xie ZW, Zheng J et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073
Citation: Huang YJ, Xiao TX, Chen S, Xie ZW, Zheng J et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073

Original Article Open Access

All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet

More Information
  • Optical logic gates play important roles in all-optical logic circuits, which lie at the heart of the next-generation optical computing technology. However, the intrinsic contradiction between compactness and robustness hinders the development in this field. Here, we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet, which enables controlled-NOT logic gates in infrared region. Therefore, the directional asymmetric electromagnetic transmission can be achieved. As a proof of concept, a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field. In addition, since the design method is derived from geometric optics, it can be easily applied to other spectra. We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging, chiroptical spectroscopy and optical computing.
  • 加载中
  • [1] Caulfield HJ, Dolev S. Why future supercomputing requires optics. Nat Photonics 4, 261–263 (2010). doi: 10.1038/nphoton.2010.94

    CrossRef Google Scholar

    [2] Kirchain R, Kimerling L. A roadmap for nanophotonics. Nat Photonics 1, 303–305 (2007). doi: 10.1038/nphoton.2007.84

    CrossRef Google Scholar

    [3] Silva A, Monticone F, Castaldi G, Galdi V, Alù A et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818

    CrossRef Google Scholar

    [4] Zhu TF, Zhou YH, Lou YJ, Ye H, Qiu M et al. Plasmonic computing of spatial differentiation. Nat Commun 8, 15391 (2017). doi: 10.1038/ncomms15391

    CrossRef Google Scholar

    [5] Qian C, Lin X, Lin XB, Xu J, Sun Y et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl 9, 59 (2020). doi: 10.1038/s41377-020-0303-2

    CrossRef Google Scholar

    [6] McCutcheon MW, Rieger GW, Young JF, Dalacu D, Poole PJ et al. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Appl Phys Lett 95, 221102 (2009). doi: 10.1063/1.3265736

    CrossRef Google Scholar

    [7] Tucker RS. The role of optics in computing. Nat Photonics 4, 405 (2010). doi: 10.1038/nphoton.2010.162

    CrossRef Google Scholar

    [8] Xu QF, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express 15, 924–929 (2007). doi: 10.1364/OE.15.000924

    CrossRef Google Scholar

    [9] Sang YG, Wu XJ, Raja SS, Wang CY, Li HZ et al. Broadband multifunctional plasmonic logic gates. Adv Opt Mater 6, 1701368 (2018). doi: 10.1002/adom.201701368

    CrossRef Google Scholar

    [10] Fu YL, Hu XY, Lu CC, Yue S, Yang H et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12, 5784–5790 (2012). doi: 10.1021/nl303095s

    CrossRef Google Scholar

    [11] Liu Q, Ouyang ZB, Wu CJ, Liu CP, Wang JC. All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt Express 16, 18992–19000 (2008). doi: 10.1364/OE.16.018992

    CrossRef Google Scholar

    [12] Zavalin AI, Shamir J, Vikram CS, Caulfield HJ. Achieving stabilization in interferometric logic operations. Appl Opt 45, 360–365 (2006). doi: 10.1364/AO.45.000360

    CrossRef Google Scholar

    [13] Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [14] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [15] Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [16] Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885

    CrossRef Google Scholar

    [17] Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8

    CrossRef Google Scholar

    [18] Huang YJ, Luo J, Pu MB, Guo YH, Zhao ZY et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci 6, 1801691 (2019). doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [19] Yu P, Besteiro LV, Huang YJ, Wu J, Fu L et al. Broadband metamaterial absorbers. Adv Opt Mater 7, 1800995 (2019). doi: 10.1002/adom.201800995

    CrossRef Google Scholar

    [20] Huang YJ, Xiao TX, Xie ZW, Zheng J, Su YR et al. Multistate nonvolatile metamirrors with tunable optical chirality. ACS Appl Mater Interfaces 13, 45890–45897 (2021). doi: 10.1021/acsami.1c14204

    CrossRef Google Scholar

    [21] Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022).

    Google Scholar

    [22] Song MW, Wang D, Peana S, Choudhury S, Nyga P et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl Phys Rev 6, 041308 (2019). doi: 10.1063/1.5110051

    CrossRef Google Scholar

    [23] Song MW, Wang D, Kudyshev ZA, Xuan Y, Wang ZX et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev 15, 2000343 (2021). doi: 10.1002/lpor.202000343

    CrossRef Google Scholar

    [24] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [25] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [26] Qin F, Liu BQ, Zhu LW, Lei J, Fang W et al. π-phase modulated monolayer supercritical lens. Nat Commun 12, 32 (2021). doi: 10.1038/s41467-020-20278-x

    CrossRef Google Scholar

    [27] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021).

    Google Scholar

    [28] Fan QB, Xu WZ, Hu XM, Zhu WQ, Yue T et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat Commun 13, 2130 (2022). doi: 10.1038/s41467-022-29568-y

    CrossRef Google Scholar

    [29] Yang YH, Jing LQ, Zheng B, Hao R, Yin WY et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater 28, 6866–6871 (2016). doi: 10.1002/adma.201600625

    CrossRef Google Scholar

    [30] Qian C, Zheng B, Shen YC, Jing L, Li EP et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [31] Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [32] Chen Y, Yang XD, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl 8, 45 (2019). doi: 10.1038/s41377-019-0156-8

    CrossRef Google Scholar

    [33] Huo PC, Zhang S, Fan QB, Lu YQ, Xu T. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale 11, 10646–10654 (2019). doi: 10.1039/C8NR09697J

    CrossRef Google Scholar

    [34] Han BW, Li SJ, Li ZY, Huang GS, Tian JH et al. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt Express 29, 19643–19654 (2021). doi: 10.1364/OE.425787

    CrossRef Google Scholar

    [35] Li ZY, Li SJ, Han BW, Huang GS, Guo ZX et al. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously. Adv Theory Simul 4, 2100117 (2021). doi: 10.1002/adts.202100117

    CrossRef Google Scholar

    [36] Li SJ, Li ZY, Han BW, Huang GS, Liu XB et al. Multifunctional coding metasurface with left and right circularly polarized and multiple beams. Front Mater 9, 854062 (2022). doi: 10.3389/fmats.2022.854062

    CrossRef Google Scholar

    [37] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [38] Zhang XH, Pu MB, Guo YH, Jin JJ, Li X et al. Colorful metahologram with independently controlled images in transmission and reflection spaces. Adv Funct Mater 29, 1809145 (2019). doi: 10.1002/adfm.201809145

    CrossRef Google Scholar

    [39] Huang YJ, Xiao TX, Xie ZW, Zheng J, Su YR et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation. Adv Opt Mater 9, 2001663 (2021). doi: 10.1002/adom.202001663

    CrossRef Google Scholar

    [40] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [41] Meymand RE, Soleymani A, Granpayeh N. All-optical AND, OR, and XOR logic gates based on coherent perfect absorption in graphene-based metasurface at terahertz region. Opt Commun 458, 124772 (2020). doi: 10.1016/j.optcom.2019.124772

    CrossRef Google Scholar

    [42] Zhang ZJ, Yang JB, Bai W, Han YX, He X et al. All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces. Appl Opt 58, 7392–7396 (2019). doi: 10.1364/AO.58.007392

    CrossRef Google Scholar

    [43] Zhao ZH, Wang Y, Ding XM, Li HY, Fu JH et al. Compact logic operator utilizing a single-layer metasurface. Photonics Res 10, 316–322 (2022). doi: 10.1364/PRJ.439036

    CrossRef Google Scholar

    [44] Gazzano O, Almeida MP, Nowak AK, Portalupi SL, Lemaître A et al. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys Rev Lett 110, 250501 (2013). doi: 10.1103/PhysRevLett.110.250501

    CrossRef Google Scholar

    [45] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster GPT et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003). doi: 10.1038/nature01494

    CrossRef Google Scholar

    [46] Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin–orbit interactions of light. Nat Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [47] Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [48] Huo PC, Zhang C, Zhu WQ, Liu MZ, Zhang S et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett 20, 2791–2798 (2020). doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [49] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [50] Mansuripur M. Classical Optics and Its Applications (Cambridge University Press, Cambridge, 2002).

    Google Scholar

    [51] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [52] Chen K, Ding GW, Hu GW, Jin ZW, Zhao JM et al. Directional janus metasurface. Adv Mater 32, 1906352 (2020). doi: 10.1002/adma.201906352

    CrossRef Google Scholar

    [53] Sun QR, Zhang ZJ, Huang YJ, Ma XL, Pu MB et al. Asymmetric transmission and wavefront manipulation toward dual-frequency meta-holograms. ACS Photonics 6, 1541–1546 (2019). doi: 10.1021/acsphotonics.9b00303

    CrossRef Google Scholar

    [54] Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718

    CrossRef Google Scholar

    [55] Zhang XH, Li X, Jin JJ, Pu MB, Ma XL et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale 10, 9304–9310 (2018). doi: 10.1039/C7NR08428E

    CrossRef Google Scholar

    [56] Huang LL, Mühlenbernd H, Li XW, Song X, Bai BF et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater 27, 6444–6449 (2015). doi: 10.1002/adma.201502541

    CrossRef Google Scholar

    [57] Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [58] Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [59] Yu LG, Fan YB, Wang YJ, Zhang C, Yang WH et al. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photonics Rev 14, 1900324 (2020). doi: 10.1002/lpor.201900324

    CrossRef Google Scholar

  • Supplementary information for All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1123) PDF downloads(253) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint