Citation: | Huang YJ, Xiao TX, Chen S, Xie ZW, Zheng J et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073 |
[1] | Caulfield HJ, Dolev S. Why future supercomputing requires optics. Nat Photonics 4, 261–263 (2010). doi: 10.1038/nphoton.2010.94 |
[2] | Kirchain R, Kimerling L. A roadmap for nanophotonics. Nat Photonics 1, 303–305 (2007). doi: 10.1038/nphoton.2007.84 |
[3] | Silva A, Monticone F, Castaldi G, Galdi V, Alù A et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818 |
[4] | Zhu TF, Zhou YH, Lou YJ, Ye H, Qiu M et al. Plasmonic computing of spatial differentiation. Nat Commun 8, 15391 (2017). doi: 10.1038/ncomms15391 |
[5] | Qian C, Lin X, Lin XB, Xu J, Sun Y et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl 9, 59 (2020). doi: 10.1038/s41377-020-0303-2 |
[6] | McCutcheon MW, Rieger GW, Young JF, Dalacu D, Poole PJ et al. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Appl Phys Lett 95, 221102 (2009). doi: 10.1063/1.3265736 |
[7] | Tucker RS. The role of optics in computing. Nat Photonics 4, 405 (2010). doi: 10.1038/nphoton.2010.162 |
[8] | Xu QF, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express 15, 924–929 (2007). doi: 10.1364/OE.15.000924 |
[9] | Sang YG, Wu XJ, Raja SS, Wang CY, Li HZ et al. Broadband multifunctional plasmonic logic gates. Adv Opt Mater 6, 1701368 (2018). doi: 10.1002/adom.201701368 |
[10] | Fu YL, Hu XY, Lu CC, Yue S, Yang H et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12, 5784–5790 (2012). doi: 10.1021/nl303095s |
[11] | Liu Q, Ouyang ZB, Wu CJ, Liu CP, Wang JC. All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt Express 16, 18992–19000 (2008). doi: 10.1364/OE.16.018992 |
[12] | Zavalin AI, Shamir J, Vikram CS, Caulfield HJ. Achieving stabilization in interferometric logic operations. Appl Opt 45, 360–365 (2006). doi: 10.1364/AO.45.000360 |
[13] | Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194 |
[14] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[15] | Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098 |
[16] | Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885 |
[17] | Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8 |
[18] | Huang YJ, Luo J, Pu MB, Guo YH, Zhao ZY et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci 6, 1801691 (2019). doi: 10.1002/advs.201801691 |
[19] | Yu P, Besteiro LV, Huang YJ, Wu J, Fu L et al. Broadband metamaterial absorbers. Adv Opt Mater 7, 1800995 (2019). doi: 10.1002/adom.201800995 |
[20] | Huang YJ, Xiao TX, Xie ZW, Zheng J, Su YR et al. Multistate nonvolatile metamirrors with tunable optical chirality. ACS Appl Mater Interfaces 13, 45890–45897 (2021). doi: 10.1021/acsami.1c14204 |
[21] | Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). |
[22] | Song MW, Wang D, Peana S, Choudhury S, Nyga P et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl Phys Rev 6, 041308 (2019). doi: 10.1063/1.5110051 |
[23] | Song MW, Wang D, Kudyshev ZA, Xuan Y, Wang ZX et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev 15, 2000343 (2021). doi: 10.1002/lpor.202000343 |
[24] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[25] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[26] | Qin F, Liu BQ, Zhu LW, Lei J, Fang W et al. π-phase modulated monolayer supercritical lens. Nat Commun 12, 32 (2021). doi: 10.1038/s41467-020-20278-x |
[27] | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). |
[28] | Fan QB, Xu WZ, Hu XM, Zhu WQ, Yue T et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat Commun 13, 2130 (2022). doi: 10.1038/s41467-022-29568-y |
[29] | Yang YH, Jing LQ, Zheng B, Hao R, Yin WY et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater 28, 6866–6871 (2016). doi: 10.1002/adma.201600625 |
[30] | Qian C, Zheng B, Shen YC, Jing L, Li EP et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2 |
[31] | Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014 |
[32] | Chen Y, Yang XD, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl 8, 45 (2019). doi: 10.1038/s41377-019-0156-8 |
[33] | Huo PC, Zhang S, Fan QB, Lu YQ, Xu T. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale 11, 10646–10654 (2019). doi: 10.1039/C8NR09697J |
[34] | Han BW, Li SJ, Li ZY, Huang GS, Tian JH et al. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt Express 29, 19643–19654 (2021). doi: 10.1364/OE.425787 |
[35] | Li ZY, Li SJ, Han BW, Huang GS, Guo ZX et al. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously. Adv Theory Simul 4, 2100117 (2021). doi: 10.1002/adts.202100117 |
[36] | Li SJ, Li ZY, Han BW, Huang GS, Liu XB et al. Multifunctional coding metasurface with left and right circularly polarized and multiple beams. Front Mater 9, 854062 (2022). doi: 10.3389/fmats.2022.854062 |
[37] | Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[38] | Zhang XH, Pu MB, Guo YH, Jin JJ, Li X et al. Colorful metahologram with independently controlled images in transmission and reflection spaces. Adv Funct Mater 29, 1809145 (2019). doi: 10.1002/adfm.201809145 |
[39] | Huang YJ, Xiao TX, Xie ZW, Zheng J, Su YR et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation. Adv Opt Mater 9, 2001663 (2021). doi: 10.1002/adom.202001663 |
[40] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[41] | Meymand RE, Soleymani A, Granpayeh N. All-optical AND, OR, and XOR logic gates based on coherent perfect absorption in graphene-based metasurface at terahertz region. Opt Commun 458, 124772 (2020). doi: 10.1016/j.optcom.2019.124772 |
[42] | Zhang ZJ, Yang JB, Bai W, Han YX, He X et al. All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces. Appl Opt 58, 7392–7396 (2019). doi: 10.1364/AO.58.007392 |
[43] | Zhao ZH, Wang Y, Ding XM, Li HY, Fu JH et al. Compact logic operator utilizing a single-layer metasurface. Photonics Res 10, 316–322 (2022). doi: 10.1364/PRJ.439036 |
[44] | Gazzano O, Almeida MP, Nowak AK, Portalupi SL, Lemaître A et al. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys Rev Lett 110, 250501 (2013). doi: 10.1103/PhysRevLett.110.250501 |
[45] | Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster GPT et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003). doi: 10.1038/nature01494 |
[46] | Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin–orbit interactions of light. Nat Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201 |
[47] | Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[48] | Huo PC, Zhang C, Zhu WQ, Liu MZ, Zhang S et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett 20, 2791–2798 (2020). doi: 10.1021/acs.nanolett.0c00471 |
[49] | Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295 |
[50] | Mansuripur M. Classical Optics and Its Applications (Cambridge University Press, Cambridge, 2002). |
[51] | Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[52] | Chen K, Ding GW, Hu GW, Jin ZW, Zhao JM et al. Directional janus metasurface. Adv Mater 32, 1906352 (2020). doi: 10.1002/adma.201906352 |
[53] | Sun QR, Zhang ZJ, Huang YJ, Ma XL, Pu MB et al. Asymmetric transmission and wavefront manipulation toward dual-frequency meta-holograms. ACS Photonics 6, 1541–1546 (2019). doi: 10.1021/acsphotonics.9b00303 |
[54] | Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718 |
[55] | Zhang XH, Li X, Jin JJ, Pu MB, Ma XL et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale 10, 9304–9310 (2018). doi: 10.1039/C7NR08428E |
[56] | Huang LL, Mühlenbernd H, Li XW, Song X, Bai BF et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater 27, 6444–6449 (2015). doi: 10.1002/adma.201502541 |
[57] | Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888 |
[58] | Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682 |
[59] | Yu LG, Fan YB, Wang YJ, Zhang C, Yang WH et al. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photonics Rev 14, 1900324 (2020). doi: 10.1002/lpor.201900324 |
Supplementary information for All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet |
Schematic for the proposed all-optical CNOT LG. (a–d) Far-field responses under different incident conditions that correspond to (a) no focus, (b) two foci, (c) one focus with small focal distance and (d) one focus with large focal distance. The corresponding truth-table is shown in the inset with spin state as CS and incident direction as TS, which is perfectly matched with that in Eq. (2).
Unit cells for the CNOT LG metasurface doublet. (a, e) Schematic for HHWP and LHWP unit cells, respectively. P=4.5 μm, h=6 μm, l1=3.7 μm, w1=1.2 μm, l2=2.9 μm and w2=2.05 μm. (b, f) Corresponding polarization conversion ratio (left panel) and phase delay (right panel) with different φ for cross-polarized waves at 28.3 THz under LCP incidence. (c, g) Corresponding transmittance at φ=0 (solid lines) and φ=π/4 (dashed lines) from 27–29 THz. (d, h) Corresponding magnetic field distributions at –28.3 THz.
Numerical far-field results in x-z plane under different incident conditions. (a) Front RCP incidence. (b) Front LCP incidence. (c) Back RCP incidence. (d) Back LCP incidence. The insets show the 2D normalized intensity distributions at z=18 mm (white dashed lines) and 27 mm (blue dashed lines). When a focal spot can be observed at certain focal plane, the corresponding truth table is “1”, otherwise the truth table is “0”.
Experiment for the asymmetric transmission metasurface doublet. (a) SEM images for the front (left) and back (right) side of the metasurface. (b) Schematic illustration of the measurement setup. LP: linear polarizer. λ/4: quarter wave plate. BE: beam expander. SA: sample. (c–f) Intensity distributions at z=18 mm and 27 mm. (c) Front RCP incidence. (d) Front LCP incidence. (e) Back RCP incidence. (f) Back LCP incidence.
Demonstration of the directional Janus metasurface for orthogonal polarizations. (a) Schematic flow chart of the design process. FFT: fast Fourier transformation. IFFT: inverse fast Fourier transformation. (b–e) Calculated and measured far-field images at the same image plane under different incident conditions. (b) Front RCP incidence. (c) Front LCP incidence. (d) Back RCP incidence. (e) Back LCP incidence.