Dubietis A, Matijošius A. Table-top optical parametric chirped pulse amplifiers: past and present. Opto-Electron Adv 6, 220046 (2023). doi: 10.29026/oea.2023.220046
Citation: Dubietis A, Matijošius A. Table-top optical parametric chirped pulse amplifiers: past and present. Opto-Electron Adv 6, 220046 (2023). doi: 10.29026/oea.2023.220046

Review Open Access

Table-top optical parametric chirped pulse amplifiers: past and present

More Information
  • The generation of power- and wavelength-scalable few optical cycle pulses remains one of the major challenges in modern laser physics. Over the past decade, the development of table-top optical parametric chirped pulse amplification-based systems was progressing at amazing speed, demonstrating excellent performance characteristics in terms of pulse duration, energy, peak power and repetition rate, which place them at the front line of modern ultrafast laser technology. At present, table-top optical parametric chirped pulse amplifiers comprise a unique class of ultrafast light sources, which currently amplify octave-spanning spectra and produce carrier-envelope phase-stable, few optical cycle pulses with multi-gigawatt to multi-terawatt peak powers and multi-watt average powers, with carrier wavelengths spanning a considerable range of the optical spectrum. This article gives an overview on the state of the art of table-top optical parametric chirped pulse amplifiers, addressing their relevant scientific and technological aspects, and provides a short outlook of practical applications in the growing field of ultrafast science.
  • 加载中
  • [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun 56, 219–221 (1985). doi: 10.1016/0030-4018(85)90120-8

    CrossRef Google Scholar

    [2] Mourou G. Nobel Lecture: extreme light physics and application. Rev Mod Phys 91, 030501 (2019). doi: 10.1103/RevModPhys.91.030501

    CrossRef Google Scholar

    [3] Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt Commun 88, 437–440 (1992). doi: 10.1016/0030-4018(92)90070-8

    CrossRef Google Scholar

    [4] Cerullo G, De Silvestri S. Ultrafast optical parametric amplifiers. Rev Sci Instrum 74, 1–18 (2003). doi: 10.1063/1.1523642

    CrossRef Google Scholar

    [5] Brida D, Manzoni C, Cirmi G, Marangoni M, Bonora S et al. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J Opt 12, 013001 (2010). doi: 10.1088/2040-8978/12/1/013001

    CrossRef Google Scholar

    [6] Manzoni C, Cerullo G. Design criteria for ultrafast optical parametric amplifiers. J Opt 18, 103501 (2016). doi: 10.1088/2040-8978/18/10/103501

    CrossRef Google Scholar

    [7] Butkus R, Danielius R, Dubietis A, Piskarskas A, Stabinis A. Progress in chirped pulse optical parametric amplifiers. Appl Phys B 79, 693–700 (2004). doi: 10.1007/s00340-004-1614-3

    CrossRef Google Scholar

    [8] Dubietis A, Butkus R, Piskarskas AP. Trends in chirped pulse optical parametric amplification. IEEE J Sel Top Quantum Electron 12, 163–172 (2006). doi: 10.1109/JSTQE.2006.871962

    CrossRef Google Scholar

    [9] Witte S, Eikema KSE. Ultrafast optical parametric chirped-pulse amplification. IEEE J Sel Top Quantum Electron 18, 296–307 (2012). doi: 10.1109/JSTQE.2011.2118370

    CrossRef Google Scholar

    [10] Vaupel A, Bodnar N, Webb B, Shah L, Richardson MC. Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt Eng 53, 051507 (2013). doi: 10.1117/1.OE.53.5.051507

    CrossRef Google Scholar

    [11] Rothhardt J, Hädrich S, Delagnes JC, Cormier E, Limpert J. High average power near-infrared few-cycle lasers. Laser Photon Rev 11, 1700043 (2017). doi: 10.1002/lpor.201700043

    CrossRef Google Scholar

    [12] Ciriolo AG, Negro M, Devetta M, Cinquanta E, Faccialà D et al. Optical parametric amplification techniques for the generation of high-energy few-optical-cycles IR pulses for strong field applications. Appl Sci 7, 265 (2017). doi: 10.3390/app7030265

    CrossRef Google Scholar

    [13] Danson CN, Haefner C, Bromage J, Butcher T, Chanteloup JCF et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci Eng 7, e54 (2019). doi: 10.1017/hpl.2019.36

    CrossRef Google Scholar

    [14] Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J. Ultrashort pulse generation in the mid-IR. Prog Quantum Electron 43, 1–30 (2015). doi: 10.1016/j.pquantelec.2015.07.001

    CrossRef Google Scholar

    [15] Fattahi H, Barros HG, Gorjan M, Nubbemeyer T, Alsaif B et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014). doi: 10.1364/OPTICA.1.000045

    CrossRef Google Scholar

    [16] Piskarskas A, Stabinis A, Yankauskas A. Phase phenomena in parametric amplifiers and generators of ultrashort light pulses. Sov Phys Usp 29, 869–879 (1986).

    Google Scholar

    [17] Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt Commun 144, 125–133 (1997). doi: 10.1016/S0030-4018(97)00399-4

    CrossRef Google Scholar

    [18] Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL et al. Prospects for a multi-PW source using optical parametric chirped pulse amplifiers. Laser Part Beams 17, 331–340 (1999). doi: 10.1017/S0263034699172203

    CrossRef Google Scholar

    [19] Ross IN, Collier JL, Matousek P, Danson CN, Neely D et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl Opt 39, 2422–2427 (2000). doi: 10.1364/AO.39.002422

    CrossRef Google Scholar

    [20] Yang XD, Xu ZZ, Leng YX, Lu HH, Lin LH et al. Multiterawatt laser system based on optical parametric chirped pulse amplification. Opt Lett 27, 1135–1137 (2002). doi: 10.1364/OL.27.001135

    CrossRef Google Scholar

    [21] Chekhlov OV, Collier JL, Ross IN, Bates PK, Notley M et al. 35J broadband femtosecond optical parametric chirped pulse amplification system. Opt Lett 31, 3665–3667 (2006). doi: 10.1364/OL.31.003665

    CrossRef Google Scholar

    [22] Lozhkarev VV, Freidman GI, Ginzburg VN, Katin EV, Khazanov EA et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys Lett 4, 421–427 (2007). doi: 10.1002/lapl.200710008

    CrossRef Google Scholar

    [23] Yu LH, Liang XY, Xu L, Li WQ, Peng C et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt Lett 40, 3412–3415 (2015). doi: 10.1364/OL.40.003412

    CrossRef Google Scholar

    [24] Zeng XM, Zhou KN, Zuo YL, Zhu QH, Su JQ et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt Lett 42, 2014–2017 (2017). doi: 10.1364/OL.42.002014

    CrossRef Google Scholar

    [25] Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G et al. Ultra-broadband all-OPCPA petawatt facility fully based on LBO. High Power Laser Sci Eng 8, e31 (2020). doi: 10.1017/hpl.2020.31

    CrossRef Google Scholar

    [26] Jovanovic I, Comaskey BJ, Ebbers CA, Bonner RA, Pennington DM et al. Optical parametric chirped-pulse amplifier as an alternative to Ti: sapphire regenerative amplifiers. Appl Opt 41, 2923–2929 (2002). doi: 10.1364/AO.41.002923

    CrossRef Google Scholar

    [27] Hauri CP, Schlup P, Arisholm G, Biegert J, Keller U. Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti: sapphire oscillator. Opt Lett 29, 1369–1371 (2004). doi: 10.1364/OL.29.001369

    CrossRef Google Scholar

    [28] Kakehata M, Takada H, Kobayashi Y, Torizuka K, Takamiya H et al. Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies. Opt Express 12, 2070–2080 (2004). doi: 10.1364/OPEX.12.002070

    CrossRef Google Scholar

    [29] Xu L, Tempea G, Poppe A, Lenzner M, Spielmann C et al. High-power sub-10-fs Ti: sapphire oscillators. Appl Phys B 65, 151–159 (1997). doi: 10.1007/s003400050260

    CrossRef Google Scholar

    [30] Ell R, Morgner U, Kärtner FX, Fujimoto JG, Ippen EP et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: sapphire laser. Opt Lett 26, 373–375 (2001). doi: 10.1364/OL.26.000373

    CrossRef Google Scholar

    [31] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78, 1135–1184 (2006). doi: 10.1103/RevModPhys.78.1135

    CrossRef Google Scholar

    [32] Dubietis A. Tamošauskas G, Šuminas R, Jukna V, Couairon A. Ultrafast supercontinuum generation in bulk condensed media. Lith J Phys 57, 113–157 (2017).

    Google Scholar

    [33] Nisoli M, Stagira S, De Silvestri S, Svelto O, Sartania S et al. A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses. Appl Phys B 65, 189–196 (1997). doi: 10.1007/s003400050263

    CrossRef Google Scholar

    [34] Fuji T, Apolonski A, Krausz F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Opt Lett 29, 632–634 (2004).

    Google Scholar

    [35] Adamonis J, Antipenkov R, Kolenda J, Michailovas A, Piskarskas AP et al. High-energy Nd: YAG-amplification system for OPCPA pumping. Quantum Electron 42, 567–574 (2012). doi: 10.1070/QE2012v042n07ABEH014689

    CrossRef Google Scholar

    [36] Su HP, Peng YJ, Chen JC, Li YY, Wang PF et al. A high-energy, 100 Hz, picosecond laser for OPCPA pumping. Appl Sci 7, 997 (2017). doi: 10.3390/app7100997

    CrossRef Google Scholar

    [37] Yang SS, Cui ZJ, Sun ZM, Zhang P, Liu DA. Compact 50 W all-solid-state picosecond laser system at 1 kHz. Appl Sci 10, 6891 (2020). doi: 10.3390/app10196891

    CrossRef Google Scholar

    [38] Mecseki K, Bigourd D, Patankar S, Stuart NH, Smith RA. Flat-top picosecond pulses generated by chirped spectral modulation from a Nd: YLF regenerative amplifier for pumping few-cycle optical parametric amplifiers. Appl Opt 53, 2229–2235 (2014). doi: 10.1364/AO.53.002229

    CrossRef Google Scholar

    [39] Heese C, Oehler AE, Gallmann L, Keller U. High-energy picosecond Nd: YVO4 slab amplifier for OPCPA pumping. Appl Phys B 103, 5–8 (2011). doi: 10.1007/s00340-011-4509-0

    CrossRef Google Scholar

    [40] Hemmer M, Vaupel A, Wohlmuth M, Richardson M. OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering. Appl Phys B 106, 599–603 (2012). doi: 10.1007/s00340-011-4843-2

    CrossRef Google Scholar

    [41] Liu JX, Wang W, Wang ZH, Lv ZG, Zhang ZY et al. Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems. Appl Sci 5, 1590–1602 (2015). doi: 10.3390/app5041590

    CrossRef Google Scholar

    [42] Michailovas K, Zaukevičius A, Petrauskienė V, Smilgevičius V, Balickas S et al. Sub-20 ps high energy pulses from 1 kHz Neodymium-based CPA. Lith J Phys 58, 159–169 (2018).

    Google Scholar

    [43] Vaupel A, Bodnar N, Webb B, Shah L, Hemmer M et al. Hybrid master oscillator power amplifier system providing 10 mJ, 32 W, and 50 MW pulses for optical parametric chirped-pulse amplification pumping. J Opt Soc Am B 30, 3278–3283 (2013). doi: 10.1364/JOSAB.30.003278

    CrossRef Google Scholar

    [44] Michailovas K, Baltuska A, Pugzlys A, Smilgevicius V, Michailovas A et al. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers. Opt Express 24, 22261–22271 (2016). doi: 10.1364/OE.24.022261

    CrossRef Google Scholar

    [45] Antipenkov R, Varanavičius A, Zaukevičius A, Piskarskas AP. Femtosecond Yb: KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems. Opt Express 19, 3519–3524 (2011). doi: 10.1364/OE.19.003519

    CrossRef Google Scholar

    [46] João CP, Wagner F, Körner J, Hein J, Gottschall T et al. A 10-mJ-level compact CPA system based on Yb: KGW for ultrafast optical parametric amplifier pumping. Appl Phys B 118, 401–407 (2015). doi: 10.1007/s00340-015-6003-6

    CrossRef Google Scholar

    [47] Klingebiel S, Wandt C, Skrobol C, Ahmad I, Trushin SA et al. High energy picosecond Yb: YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. Opt Express 19, 5357–5363 (2011). doi: 10.1364/OE.19.005357

    CrossRef Google Scholar

    [48] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt Express 19, 255–260 (2011). doi: 10.1364/OE.19.000255

    CrossRef Google Scholar

    [49] Zapata LE, Reichert F, Hemmer M, Kärtner FX. 250 W average power, 100 kHz repetition rate cryogenic Yb: YAG amplifier for OPCPA pumping. Opt Lett 41, 492–495 (2016). doi: 10.1364/OL.41.000492

    CrossRef Google Scholar

    [50] Mackonis P, Rodin AM. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb: YAG rods for seeding and pumping of OPCPA. Opt Express 28, 1261–1268 (2020). doi: 10.1364/OE.380907

    CrossRef Google Scholar

    [51] Hubka Z, Antipenkov R, Boge R, Erdman E, Greco M et al. 120 mJ, 1 kHz, picosecond laser at 515 nm. Opt Lett 24, 5655–5658 (2021).

    Google Scholar

    [52] Schulz M, Riedel R, Willner A, Mans T, Schnitzler C et al. Yb: YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt Lett 36, 2456–2458 (2011). doi: 10.1364/OL.36.002456

    CrossRef Google Scholar

    [53] Schmidt BE, Hage A, Mans T, Légaré F, Wörner HJ. Highly stable, 54mJ Yb-InnoSlab laser platform at 0.5kW average power. Opt Express 25, 17549–17555 (2017). doi: 10.1364/OE.25.017549

    CrossRef Google Scholar

    [54] Malevich P, Andriukaitis G, Flöry T, Verhoef AJ, Fernández A et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Opt Lett 38, 2746–2749 (2013). doi: 10.1364/OL.38.002746

    CrossRef Google Scholar

    [55] Hemmer M, Sánchez D, Jelínek M, Smirnov V, Jelinkova H et al. 2-μm wavelength, high-energy Ho: YLF chirped-pulse amplifier for mid-infrared OPCPA. Opt Lett 40, 451–454 (2015). doi: 10.1364/OL.40.000451

    CrossRef Google Scholar

    [56] von Grafenstein L, Bock M, Ueberschaer D, Griebner U, Elsaesser T. Picosecond 34 mJ pulses at kHz repetition rates from a Ho: YLF amplifier at 2 μm wavelength. Opt Express 23, 33142–33149 (2015). doi: 10.1364/OE.23.033142

    CrossRef Google Scholar

    [57] von Grafenstein L, Bock M, Ueberschaer D, Koç A, Griebner U et al. 2.05 μm chirped pulse amplification system at a 1 kHz repetition rate-2.4 ps pulses with 17 GW peak power. Opt Lett 45, 3836–3839 (2020). doi: 10.1364/OL.395496

    CrossRef Google Scholar

    [58] Prandolini MJ, Riedel R, Schulz M, Hage A, Höppner H et al. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier. Opt Express 22, 1594–1607 (2014). doi: 10.1364/OE.22.001594

    CrossRef Google Scholar

    [59] Riedel R, Rothhardt J, Beil K, Gronloh B, Klenke A et al. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification. Opt Express 22, 17607–17619 (2014). doi: 10.1364/OE.22.017607

    CrossRef Google Scholar

    [60] Galletti M, Pires H, Hariton V, Alves J, Oliveira P et al. Ultra-broadband near-infrared NOPAs based on the nonlinear crystals BiBO and YCOB. High Power Laser Sci Eng 8, e29 (2020). doi: 10.1017/hpl.2020.27

    CrossRef Google Scholar

    [61] Baudisch M, Hemmer M, Pires H, Biegert J. Performance of MgO: PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power. Opt Lett 39, 5802–5805 (2014). doi: 10.1364/OL.39.005802

    CrossRef Google Scholar

    [62] Schunemann PG, Zawilski KT, Pomeranz LA, Creeden DJ, Budni PA. Advances in nonlinear optical crystals for mid-infrared coherent sources. J Opt Soc Am B 33, D36–D43 (2016). doi: 10.1364/JOSAB.33.000D36

    CrossRef Google Scholar

    [63] Tian K, He LZ, Yang XM, Liang HK. Mid-infrared few-cycle pulse generation and amplification. Photonics 8, 290 (2021). doi: 10.3390/photonics8080290

    CrossRef Google Scholar

    [64] Liu JS, Ma JG, Wang J, Yuan P, Xie GQ et al. Toward 5.2 μm terawatt few-cycle pulses via optical parametric chirped-pulse amplification with oxide La3Ga5.5Nb0.5O14 crystals. High Power Laser Sci Eng 7, e61 (2019). doi: 10.1017/hpl.2019.47

    CrossRef Google Scholar

    [65] Namboodiri M, Luo C, Indorf G, Golz T, Grguraš I et al. Optical properties of Li-based nonlinear crystals for high power mid-IR OPCPA pumped at 1 μm under realistic operational conditions. Opt Mater Express 11, 231–239 (2021). doi: 10.1364/OME.414478

    CrossRef Google Scholar

    [66] Zinkstok RT, Witte S, Hogervorst W, Eikema KSE. High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control. Opt Lett 30, 78–80 (2005). doi: 10.1364/OL.30.000078

    CrossRef Google Scholar

    [67] Witte S, Zinkstok RT, Hogervorst W, Eikema KSE. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. Opt Express 13, 4903–4908 (2005). doi: 10.1364/OPEX.13.004903

    CrossRef Google Scholar

    [68] Ishii N, Turi L, Yakovlev VS, Fuji T, Krausz F et al. Multimillijoule chirped parametric amplification of few-cycle pulses. Opt Lett 30, 567–569 (2005). doi: 10.1364/OL.30.000567

    CrossRef Google Scholar

    [69] Stepanenko Y, Radzewicz C. Multipass non-collinear optical parametric amplifier for femtosecond pulses. Opt Express 14, 779–785 (2006). doi: 10.1364/OPEX.14.000779

    CrossRef Google Scholar

    [70] Witte S, Zinkstok RT, Wolf AL, Hogervorst W, Ubachs W et al. A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification. Opt Express 14, 8168–8177 (2006). doi: 10.1364/OE.14.008168

    CrossRef Google Scholar

    [71] Wnuk P, Stepanenko Y, Radzewicz C. Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage. Opt Express 17, 15264–15273 (2009). doi: 10.1364/OE.17.015264

    CrossRef Google Scholar

    [72] Tavella F, Marcinkevičius A, Krausz F. 90 mJ parametric chirped pulse amplification of 10 fs pulses. Opt Express 14, 12822–12827 (2006). doi: 10.1364/OE.14.012822

    CrossRef Google Scholar

    [73] Tavella F, Nomura Y, Veisz L, Pervak V, Marcinkevičius A et al. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt Lett 32, 2227–2229 (2007). doi: 10.1364/OL.32.002227

    CrossRef Google Scholar

    [74] Kiriyama H, Mori M, Nakai Y, Yamamoto Y, Tanoue M et al. High-energy, high-contrast, multiterawatt laser pulses by optical parametric chirped-pulse amplification. Opt Lett 32, 2315–2317 (2007). doi: 10.1364/OL.32.002315

    CrossRef Google Scholar

    [75] Herrmann D, Veisz L, Tautz R, Tavella F, Schmid K et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt Lett 34, 2459–2461 (2009). doi: 10.1364/OL.34.002459

    CrossRef Google Scholar

    [76] Liu XD, Xu L, Zhang M, Pan SL, Liang XY. Broadband optical parametric chirped pulse amplification in K3B6O10Br crystal near 800 nm. Laser Phys Lett 14, 095403 (2017). doi: 10.1088/1612-202X/aa7f14

    CrossRef Google Scholar

    [77] Yang SH, Liang X, Xie XL, Yang QW, Tu XN et al. Ultra-broadband high conversion efficiency optical parametric chirped-pulse amplification based on YCOB crystals. Opt Express 28, 11645–11651 (2020). doi: 10.1364/OE.385790

    CrossRef Google Scholar

    [78] Kessel A, Leshchenko VE, Jahn O, Krüger M, Münzer A et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 5, 434–442 (2018). doi: 10.1364/OPTICA.5.000434

    CrossRef Google Scholar

    [79] Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A et al. 1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz. Opt Lett 32, 2487–2489 (2007). doi: 10.1364/OL.32.002487

    CrossRef Google Scholar

    [80] Adachi S, Ishii N, Kanai T, Kosuge A, Itatani J et al. 5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz. Opt Express 16, 14341–14352 (2008). doi: 10.1364/OE.16.014341

    CrossRef Google Scholar

    [81] Adachi S, Ishii N, Nomura Y, Kobayashi Y, Itatani J et al. 1.2 mJ sub-4-fs source at 1 kHz from an ionizing gas. Opt Lett 35, 980–982 (2010). doi: 10.1364/OL.35.000980

    CrossRef Google Scholar

    [82] Batysta F, Antipenkov R, Green JT, Naylon JA, Novák J et al. Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond-level relative timing jitter. Opt Express 22, 30281–30286 (2014). doi: 10.1364/OE.22.030281

    CrossRef Google Scholar

    [83] Batysta F, Antipenkov R, Novák J, Green JT, Naylon JA et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs. Opt Express 24, 17843–17848 (2016). doi: 10.1364/OE.24.017843

    CrossRef Google Scholar

    [84] Bakule P, Antipenkov R, Novák J, Batysta F, Boge R et al. Readiness of L1 ALLEGRA laser system for user operation at ELI beamlines. In OSA High-brightness Sources and Light-driven Interactions Congress 2020 HF1B. 7 (OSA, 2020).

    Google Scholar

    [85] Prinz S, Schnitzenbaumer M, Potamianos D, Schultze M, Stark S et al. Thin-disk pumped optical parametric chirped pulse amplifier delivering CEP-stable multi-mJ few-cycle pulses at 6 kHz. Opt Express 26, 1108–1124 (2018). doi: 10.1364/OE.26.001108

    CrossRef Google Scholar

    [86] Stanislauskas T, Budriūnas R, Antipenkov R, Zaukevičius A, Adamonis J et al. Table top TW-class OPCPA system driven by tandem femtosecond Yb: KGW and picosecond Nd: YAG lasers. Opt Express 22, 1865–1870 (2014). doi: 10.1364/OE.22.001865

    CrossRef Google Scholar

    [87] Budriūnas R, Stanislauskas T, Varanavičius A. Passively CEP-stabilized frontend for few cycle terawatt OPCPA system. J Opt 17, 094008 (2015). doi: 10.1088/2040-8978/17/9/094008

    CrossRef Google Scholar

    [88] Budriūnas R, Stanislauskas T, Adamonis J, Aleknavičius A, Veitas G et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt Express 25, 5797–5806 (2017). doi: 10.1364/OE.25.005797

    CrossRef Google Scholar

    [89] Toth S, Stanislauskas T, Balciunas I, Budriunas R, Adamonis J et al. SYLOS lasers – the frontier of few-cycle, multi-TW, kHz lasers for ultrafast applications at extreme light infrastructure attosecond light pulse source. J Phys Photonics 2, 045003 (2020). doi: 10.1088/2515-7647/ab9fe1

    CrossRef Google Scholar

    [90] Kretschmar M, Tuemmler J, Schütte B, Hoffmann A, Senfftleben B et al. Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses. Opt Express 28, 34574–34585 (2020). doi: 10.1364/OE.404077

    CrossRef Google Scholar

    [91] Danilevičius R, Zaukevičius A, Budriūnas R, Michailovas A, Rusteika N. Femtosecond wavelength-tunable OPCPA system based on picosecond fiber laser seed and picosecond DPSS laser pump. Opt Express 24, 17532–17540 (2016). doi: 10.1364/OE.24.017532

    CrossRef Google Scholar

    [92] Rothhardt J, Hädrich S, Limpert J, Tünnermann A. 80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6. Opt Express 17, 2508–2517 (2009). doi: 10.1364/OE.17.002508

    CrossRef Google Scholar

    [93] Rothhardt J, Hädrich S, Gottschall T, Clausnitzer T, Limpert J et al. Compact fiber amplifier pumped OPCPA system delivering gigawatt peak power 35 fs pulses. Opt Express 17, 24130–24136 (2009). doi: 10.1364/OE.17.024130

    CrossRef Google Scholar

    [94] Tavella F, Willner A, Rothhardt J, Hädrich S, Seise E et al. Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA. Opt Express 18, 4689–4694 (2010). doi: 10.1364/OE.18.004689

    CrossRef Google Scholar

    [95] Rothhardt J, Hädrich S, Seise E, Krebs M, Tavella F et al. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system. Opt Express 18, 12719–12726 (2010). doi: 10.1364/OE.18.012719

    CrossRef Google Scholar

    [96] Hädrich S, Demmler S, Rothhardt J, Jocher C, Limpert J et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification. Opt Lett 36, 313–315 (2011). doi: 10.1364/OL.36.000313

    CrossRef Google Scholar

    [97] Rothhardt J, Demmler S, Hädrich S, Limpert J, Tünnermann A. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt Express 20, 10870–10878 (2012). doi: 10.1364/OE.20.010870

    CrossRef Google Scholar

    [98] Schultze M, Binhammer T, Steinmann A, Palmer G, Emons M et al. Few-cycle OPCPA system at 143 kHz with more than 1 μJ of pulse energy. Opt Express 18, 2836–2841 (2010). doi: 10.1364/OE.18.002836

    CrossRef Google Scholar

    [99] Schultze M, Binhammer T, Palmer G, Emons M, Lang T et al. Multi-μJ, CEP-stabilized, two-cycle pulses from an OPCPA system with up to 500 kHz repetition rate. Opt Express 18, 27291–27297 (2010). doi: 10.1364/OE.18.027291

    CrossRef Google Scholar

    [100] Herrmann D, Homann C, Tautz R, Scharrer M, Russell PSJ et al. Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping. Opt Express 18, 18752–18762 (2010). doi: 10.1364/OE.18.018752

    CrossRef Google Scholar

    [101] Harth A, Schultze M, Lang T, Binhammer T, Rausch S et al. Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR. Opt Express 20, 3076–3081 (2012). doi: 10.1364/OE.20.003076

    CrossRef Google Scholar

    [102] Ahrens J, Prochnow O, Binhammer T, Lang T, Schulz B et al. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier. Opt Express 24, 8074–8080 (2016). doi: 10.1364/OE.24.008074

    CrossRef Google Scholar

    [103] Matyschok J, Lang T, Binhammer T, Prochnow O, Rausch S et al. Temporal and spatial effects inside a compact and CEP stabilized, few-cycle OPCPA system at high repetition rates. Opt Express 21, 29656–29665 (2013). doi: 10.1364/OE.21.029656

    CrossRef Google Scholar

    [104] Harth A, Guo C, Cheng YC, Losquin A, Miranda M et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA. J Opt 20, 014007 (2018). doi: 10.1088/2040-8986/aa9b04

    CrossRef Google Scholar

    [105] Prinz S, Häfner M, Schultze M, Teisset CY, Bessing R et al. Active pump-seed-pulse synchronization for OPCPA with sub-2-fs residual timing jitter. Opt Express 22, 31050–31056 (2014). doi: 10.1364/OE.22.031050

    CrossRef Google Scholar

    [106] Prinz S, Haefner M, Teisset CY, Bessing R, Michel K et al. CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power. Opt Express 23, 1388–1394 (2015). doi: 10.1364/OE.23.001388

    CrossRef Google Scholar

    [107] Hrisafov S, Pupeikis J, Chevreuil PA, Brunner F, Phillips CR et al. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt Express 28, 40145–40154 (2020). doi: 10.1364/OE.412564

    CrossRef Google Scholar

    [108] Furch FJ, Witting T, Giree A, Luan C, Schell F et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from a noncollinear optical parametric amplifier. Opt Lett 42, 2495–2498 (2017). doi: 10.1364/OL.42.002495

    CrossRef Google Scholar

    [109] Witting T, Furch FJ, Vrakking MJJ. Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system. J Opt 20, 044003 (2018). doi: 10.1088/2040-8986/aaadc3

    CrossRef Google Scholar

    [110] Lu CH, Witting T, Husakou A, Vrakking MJJ, Kung AH et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt Express 26, 8941–8956 (2018). doi: 10.1364/OE.26.008941

    CrossRef Google Scholar

    [111] Riedel R, Schulz M, Prandolini MJ, Hage A, Höppner H et al. Long-term stabilization of high power optical parametric chirped-pulse amplifiers. Opt Express 21, 28987–28999 (2013). doi: 10.1364/OE.21.028987

    CrossRef Google Scholar

    [112] Höppner H, Hage A, Tanikawa T, Schulz M, Riedel R et al. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers. New J Phys 17, 053020 (2015). doi: 10.1088/1367-2630/17/5/053020

    CrossRef Google Scholar

    [113] Puppin M, Deng YP, Prochnow O, Ahrens J, Binhammer T et al. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser. Opt Express 23, 1491–1497 (2015). doi: 10.1364/OE.23.001491

    CrossRef Google Scholar

    [114] Mecseki K, Windeler MKR, Miahnahri A, Robinson JS, Fraser JM et al. High average power 88 W OPCPA system for high-repetition-rate experiments at the LCLS x-ray free-electron laser. Opt Lett 44, 1257–1260 (2019). doi: 10.1364/OL.44.001257

    CrossRef Google Scholar

    [115] Riedel R, Stephanides A, Prandolini MJ, Gronloh B, Jungbluth B et al. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers. Opt Lett 39, 1422–1424 (2014). doi: 10.1364/OL.39.001422

    CrossRef Google Scholar

    [116] Indra L, Batysta F, Hříbek P, Novák J, Hubka Z et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA. Opt Lett 42, 843–846 (2017). doi: 10.1364/OL.42.000843

    CrossRef Google Scholar

    [117] Mackonis P, Rodin AM. OPCPA investigation with control over the temporal shape of 1.2 ps pump pulses. Opt Express 28, 12020–12027 (2020). doi: 10.1364/OE.383754

    CrossRef Google Scholar

    [118] Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S et al. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier. Opt Lett 37, 4182–4184 (2012). doi: 10.1364/OL.37.004182

    CrossRef Google Scholar

    [119] Ishii N, Kaneshima K, Kanai T, Watanabe S, Itatani J. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization. J Opt 17, 094001 (2015). doi: 10.1088/2040-8978/17/9/094001

    CrossRef Google Scholar

    [120] Yin YC, Li J, Ren XM, Zhao K, Wu Y et al. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm. Opt Lett 41, 1142–1145 (2016). doi: 10.1364/OL.41.001142

    CrossRef Google Scholar

    [121] Fuji T, Ishii N, Teisset CY, Gu X, Metzger T et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1μm. Opt Lett 31, 1103–1105 (2006). doi: 10.1364/OL.31.001103

    CrossRef Google Scholar

    [122] Gu X, Marcus G, Deng YP, Metzger T, Teisset C et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength. Opt Express 17, 62–69 (2009). doi: 10.1364/OE.17.000062

    CrossRef Google Scholar

    [123] Moses J, Huang SW, Hong KH, Mücke OD, Falcão-Filho EL et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt Lett 34, 1639–1641 (2009). doi: 10.1364/OL.34.001639

    CrossRef Google Scholar

    [124] Hong KH, Huang SW, Moses J, Fu X, Lai CJ et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb: YAG laser. Opt Express 19, 15538–15548 (2011). doi: 10.1364/OE.19.015538

    CrossRef Google Scholar

    [125] Hong KH, Lai CJ, Siqueira JP, Krogen P, Moses J et al. Multi-mJ, kHz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation. Opt Lett 39, 3145–3148 (2014). doi: 10.1364/OL.39.003145

    CrossRef Google Scholar

    [126] Deng YP, Schwarz A, Fattahi H, Ueffing M, Gu X et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm. Opt Lett 37, 4973–4975 (2012). doi: 10.1364/OL.37.004973

    CrossRef Google Scholar

    [127] Marcinkevičiūtė A, Michailovas K, Butkus R. Generation and parametric amplification of broadband chirped pulses in the near-infrared. Opt Commun 415, 70–73 (2018). doi: 10.1016/j.optcom.2018.01.029

    CrossRef Google Scholar

    [128] Feng TL, Heilmann A, Bock M, Ehrentraut L, Witting T et al. 27 W 2.1 μm OPCPA system for coherent soft X-ray generation operating at 10 kHz. Opt Express 28, 8724–8733 (2020). doi: 10.1364/OE.386588

    CrossRef Google Scholar

    [129] Schmidt BE, Thiré N, Boivin M, Laramée A, Poitras F et al. Frequency domain optical parametric amplification. Nat Commun 5, 3643 (2014). doi: 10.1038/ncomms4643

    CrossRef Google Scholar

    [130] Zhang QB, Takahashi EJ, Mücke OD, Lu PX, Midorikawa K. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt Express 19, 7190–7212 (2011). doi: 10.1364/OE.19.007190

    CrossRef Google Scholar

    [131] Fu YX, Takahashi EJ, Midorikawa K. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Opt Lett 40, 5082–5085 (2015). doi: 10.1364/OL.40.005082

    CrossRef Google Scholar

    [132] Xu L, Nishimura K, Suda A, Midorikawa K, Fu YX et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification. Opt Express 28, 15138–15147 (2020). doi: 10.1364/OE.392045

    CrossRef Google Scholar

    [133] Fu YX, Xue B, Midorikawa K, Takahashi EJ. TW-scale mid-infrared pulses near 3.3 µm directly generated by dual-chirped optical parametric amplification. Appl Phys Lett 112, 241105 (2018). doi: 10.1063/1.5038414

    CrossRef Google Scholar

    [134] Neuhaus M, Fuest H, Seeger M, Schötz J, Trubetskov M et al. 10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate. Opt Express 26, 16074–16085 (2018). doi: 10.1364/OE.26.016074

    CrossRef Google Scholar

    [135] Pupeikis J, Chevreuil PA, Bigler N, Gallmann L, Phillips CR et al. Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz. Optica 7, 168–171 (2020). doi: 10.1364/OPTICA.379846

    CrossRef Google Scholar

    [136] Bigler N, Pupeikis J, Hrisafov S, Gallmann L, Phillips CR et al. Decoupling phase-matching bandwidth and interaction geometry using non-collinear quasi-phase-matching gratings. Opt Express 26, 6036–6045 (2018). doi: 10.1364/OE.26.006036

    CrossRef Google Scholar

    [137] Bigler N, Pupeikis J, Hrisafov S, Gallmann L, Phillips CR et al. High-power OPCPA generating 1.7 cycle pulses at 2.5 µm. Opt Express 26, 26750–26757 (2018). doi: 10.1364/OE.26.026750

    CrossRef Google Scholar

    [138] Shamir Y, Rothhardt J, Hädrich S, Demmler S, Tschernajew M et al. High-average-power 2 µm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate. Opt Lett 40, 5546–5549 (2015). doi: 10.1364/OL.40.005546

    CrossRef Google Scholar

    [139] Rudd JV, Law RJ, Luk TS, Cameron SM. High-power optical parametric chirped-pulse amplifier system with a 1.55 µm signal and a 1.064 µm pump. Opt Lett 30, 1974–1976 (2005). doi: 10.1364/OL.30.001974

    CrossRef Google Scholar

    [140] Kraemer D, Cowan ML, Hua RZ, Franjic K, Miller RJD. High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification. J Opt Soc Am B 24, 813–818 (2007). doi: 10.1364/JOSAB.24.000813

    CrossRef Google Scholar

    [141] Rotermund F, Yoon CJ, Petrov V, Noack F, Kurimura S et al. Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz. Opt Express 12, 6421–6427 (2004). doi: 10.1364/OPEX.12.006421

    CrossRef Google Scholar

    [142] Rotermund F, Yoon CJ, Kim K, Lim K, Kurimura S et al. Optical parametric chirped pulse amplification of Cr: forsterite laser pulses in periodically poled stoichiometric LiTaO3 at 1 kHz. Appl Phys B 85, 17–20 (2006). doi: 10.1007/s00340-006-2379-7

    CrossRef Google Scholar

    [143] Cho WB, Kim K, Lim H, Lee J, Kurimura S et al. Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm. Opt Lett 32, 2828–2830 (2007). doi: 10.1364/OL.32.002828

    CrossRef Google Scholar

    [144] de Faria Pinto T, Mathijssen J, Eikema KSE, Witte S. Optical parametric chirped pulse amplifier producing ultrashort 10.5 mJ pulses at 1.55 µm. Opt Express 27, 29829–29837 (2019). doi: 10.1364/OE.27.029829

    CrossRef Google Scholar

    [145] Mücke OD, Sidorov D, Dombi P, Pugžlys A, Baltuška A et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 µm. Opt Lett 34, 118–120 (2009). doi: 10.1364/OL.34.000118

    CrossRef Google Scholar

    [146] Mücke OD, Sidorov D, Dombi P, Pugžlys A, Ališauskas S et al. 10-mJ optically synchronized CEP-stable chirped parametric amplifier at 1.5 µm. Opt Spectrosc 108, 456–462 (2010). doi: 10.1134/S0030400X10030215

    CrossRef Google Scholar

    [147] Mücke OD, Ališauskas S, Verhoef AJ, Pugžlys A, Baltuška A et al. Self-compression of millijoule 1.5 µm pulses. Opt Lett 34, 2498–2500 (2009). doi: 10.1364/OL.34.002498

    CrossRef Google Scholar

    [148] Tsai CL, Tseng YH, Liang AY, Lin MW, Yang SD et al. Nonlinear compression of intense optical pulses at 1.55 µm by multiple plate continuum generation. J Lightwave Technol 37, 5100–5107 (2019). doi: 10.1109/JLT.2019.2929287

    CrossRef Google Scholar

    [149] Rigaud P, Van de Walle A, Hanna M, Forget N, Guichard F et al. Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Opt Express 24, 26494–26502 (2016). doi: 10.1364/OE.24.026494

    CrossRef Google Scholar

    [150] Jargot G, Daher N, Lavenu L, Delen X, Forget N et al. Self-compression in a multipass cell. Opt Lett 43, 5643–5646 (2018). doi: 10.1364/OL.43.005643

    CrossRef Google Scholar

    [151] Mero M, Heiner Z, Petrov V, Rottke H, Branchi F et al. 43 W, 1.55 µm and 12.5 W, 3.1 µm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier. Opt Lett 43, 5246–5249 (2018). doi: 10.1364/OL.43.005246

    CrossRef Google Scholar

    [152] Windeler MKR, Mecseki K, Miahnahri A, Robinson JS, Fraser JM et al. 100 W high-repetition-rate near-infrared optical parametric chirped pulse amplifier. Opt Lett 44, 4287–4290 (2019). doi: 10.1364/OL.44.004287

    CrossRef Google Scholar

    [153] Erny C, Gallmann L, Keller U. High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared. Appl Phys B 96, 257–269 (2009). doi: 10.1007/s00340-009-3425-z

    CrossRef Google Scholar

    [154] Erny C, Heese C, Haag M, Gallmann L, Keller U. High-repetition-rate optical parametric chirped-pulse amplifier producing 1-µJ, sub-100-fs pulses in the mid-infrared. Opt Express 17, 1340–1345 (2009). doi: 10.1364/OE.17.001340

    CrossRef Google Scholar

    [155] Chalus O, Bates PK, Smolarski M, Biegert J. Mid-IR short-pulse OPCPA with micro-joule energy at 100 kHz. Opt Express 17, 3587–3594 (2009). doi: 10.1364/OE.17.003587

    CrossRef Google Scholar

    [156] Heese C, Phillips CR, Gallmann L, Fejer MM, Keller U. Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg: LiNbO3. Opt Lett 35, 2340–2342 (2010). doi: 10.1364/OL.35.002340

    CrossRef Google Scholar

    [157] Heese C, Phillips CR, Mayer BW, Gallmann L, Fejer MM et al. 75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA. Opt Express 20, 26888–26894 (2012). doi: 10.1364/OE.20.026888

    CrossRef Google Scholar

    [158] Mayer BW, Phillips CR, Gallmann L, Fejer MM, Keller U. Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 µm. Opt Lett 38, 4265–4268 (2013). doi: 10.1364/OL.38.004265

    CrossRef Google Scholar

    [159] Phillips CR, Mayer BW, Gallmann L, Fejer MM, Keller U. Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings. Opt Express 22, 9627–9658 (2014). doi: 10.1364/OE.22.009627

    CrossRef Google Scholar

    [160] Mayer BW, Phillips CR, Gallmann L, Keller U. Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA. Opt Express 22, 20798–20808 (2014). doi: 10.1364/OE.22.020798

    CrossRef Google Scholar

    [161] Chalus O, Thai A, Bates PK, Biegert J. Six-cycle mid-infrared source with 3.8 µJ at 100 kHz. Opt Lett 35, 3204–3206 (2010). doi: 10.1364/OL.35.003204

    CrossRef Google Scholar

    [162] Thai A, Hemmer M, Bates PK, Chalus O, Biegert J. Sub-250-mrad, passively carrier-envelope-phase- stable mid-infrared OPCPA source at high repetition rate. Opt Lett 36, 3918–3920 (2011). doi: 10.1364/OL.36.003918

    CrossRef Google Scholar

    [163] Hemmer M, Thai A, Baudisch M, Ishizuki H, Taira T et al. 18-µJ energy, 160-kHz repetition rate, 250-MW peak power mid-IR OPCPA. Chin Opt Lett 11, 013202 (2013). doi: 10.3788/COL201311.013202

    CrossRef Google Scholar

    [164] Baudisch M, Pires H, Ishizuki H, Taira T, Hemmer M, Biegert J. Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz. J Opt 17, 094002 (2015). doi: 10.1088/2040-8978/17/9/094002

    CrossRef Google Scholar

    [165] Baudisch M, Wolter B, Pullen M, Hemmer M, Biegert J. High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs. Opt Lett 41, 3583–3586 (2016). doi: 10.1364/OL.41.003583

    CrossRef Google Scholar

    [166] Elu U, Baudisch M, Pires H, Tani F, Frosz MH et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017). doi: 10.1364/OPTICA.4.001024

    CrossRef Google Scholar

    [167] Thiré N, Maksimenka R, Kiss B, Ferchaud C, Bizouard P et al. 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Opt Express 25, 1505–1514 (2017). doi: 10.1364/OE.25.001505

    CrossRef Google Scholar

    [168] Thiré N, Maksimenka R, Kiss B, Ferchaud C, Gitzinger G et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics. Opt Express 26, 26907–26915 (2018). doi: 10.1364/OE.26.026907

    CrossRef Google Scholar

    [169] Kurucz M, Flender R, Haizer L, Nagymihaly RS, Cho W et al. 2.3-cycle mid-infrared pulses from hybrid thin-plate post-compression at 7 W average power. Opt Commun 472, 126035 (2020). doi: 10.1016/j.optcom.2020.126035

    CrossRef Google Scholar

    [170] Flender R, Kurucz M, Grosz T, Borzsonyi A, Gimzevskis U et al. Dispersive mirror characterization and application for mid-infrared post-compression. J Opt 23, 065501 (2021). doi: 10.1088/2040-8986/abf88e

    CrossRef Google Scholar

    [171] Zou X, Li WK, Liang HK, Liu K, Qu SZ et al. 300 μJ, 3 W, few-cycle, 3 µm OPCPA based on periodically poled stoichiometric lithium tantalate crystals. Opt Lett 44, 2791–2794 (2019). doi: 10.1364/OL.44.002791

    CrossRef Google Scholar

    [172] Zou X, Li WK, Qu SZ, Liu K, Li H et al. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate. Laser Photon Rev 15, 2000292 (2021). doi: 10.1002/lpor.202000292

    CrossRef Google Scholar

    [173] Bridger M, Naranjo-Montoya OA, Tarasevitch A, Bovensiepen U. Towards high power broad-band OPCPA at 3000 nm. Opt Express 27, 31330–31337 (2019). doi: 10.1364/OE.27.031330

    CrossRef Google Scholar

    [174] Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt Lett 36, 2755–2757 (2011). doi: 10.1364/OL.36.002755

    CrossRef Google Scholar

    [175] Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Pugžlys A, Stepanov EA et al. Mid-infrared laser filaments in the atmosphere. Sci Rep 5, 8368 (2015). doi: 10.1038/srep08368

    CrossRef Google Scholar

    [176] Shumakova V, Malevich P, Ališauskas S, Voronin A, Zheltikov AM et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat Commun 7, 12877 (2016). doi: 10.1038/ncomms12877

    CrossRef Google Scholar

    [177] Zhao K, Zhong HZ, Yuan P, Xie GQ, Wang J et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt Lett 38, 2159–2161 (2013). doi: 10.1364/OL.38.002159

    CrossRef Google Scholar

    [178] Wang PF, Li YY, Li WK, Su HP, Shao BJ et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 µm laser based on OPCPA and hollow-core fiber compression. Opt Lett 43, 2197–2200 (2018). doi: 10.1364/OL.43.002197

    CrossRef Google Scholar

    [179] von Grafenstein L, Bock M, Ueberschaer D, Zawilski K, Schunemann P et al. 5 µm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt Lett 42, 3796–3799 (2017). doi: 10.1364/OL.42.003796

    CrossRef Google Scholar

    [180] Bock M, von Grafenstein L, Griebner U, Elsaesser T. Generation of millijoule few-cycle pulses at 5 µm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier. J Opt Soc Am B 35, C18–C24 (2018). doi: 10.1364/JOSAB.35.000C18

    CrossRef Google Scholar

    [181] von Grafenstein L, Bock M, Ueberschaer D, Escoto E, Koç A et al. Multi-millijoule, few-cycle 5 µm OPCPA at 1 kHz repetition rate. Opt Lett 45, 5998–6001 (2020). doi: 10.1364/OL.402562

    CrossRef Google Scholar

    [182] Fuertjes P, von Grafenstein L, Ueberschaer D, Mei C, Griebner U et al. Compact OPCPA system seeded by a Cr: ZnS laser for generating tunable femtosecond pulses in the MWIR. Opt Lett 46, 1704–1707 (2021). doi: 10.1364/OL.419956

    CrossRef Google Scholar

    [183] Fuertjes P, von Grafenstein L, Mei C, Bock M, Griebner U et al. Cr: ZnS-based soliton self-frequency shifted signal generation for a tunable sub-100 fs MWIR OPCPA. Opt Express 30, 5142–5150 (2022). doi: 10.1364/OE.450210

    CrossRef Google Scholar

    [184] Sanchez D, Hemmer M, Baudisch M, Cousin SL, Zawilski K et al. 7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 µm. Optica 3, 147–150 (2016). doi: 10.1364/OPTICA.3.000147

    CrossRef Google Scholar

    [185] Elu U, Steinle T, Sánchez D, Maidment L, Zawilski K et al. Table-top high-energy 7 µm OPCPA and 260 mJ Ho: YLF pump laser. Opt Lett 44, 3194–3197 (2019). doi: 10.1364/OL.44.003194

    CrossRef Google Scholar

    [186] Voronin AA, Lanin AA, Zheltikov AM. Modeling high-peak-power few-cycle field waveform generation by optical parametric amplification in the long-wavelength infrared. Opt Express 24, 23207–23220 (2016). doi: 10.1364/OE.24.023207

    CrossRef Google Scholar

    [187] Yin YC, Chew A, Ren XM, Li J, Wang Y et al. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Sci Rep 7, 45794 (2017). doi: 10.1038/srep45794

    CrossRef Google Scholar

    [188] Qu SZ, Liang HK, Liu K, Zou X, Li WK et al. 9 µm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt Lett 44, 2422–2425 (2019). doi: 10.1364/OL.44.002422

    CrossRef Google Scholar

    [189] Novák O, Krogen PR, Kroh T, Mocek T, Kärtner FX et al. Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses. Opt Lett 43, 1335–1338 (2018). doi: 10.1364/OL.43.001335

    CrossRef Google Scholar

    [190] Liu K, Liang HK, Li WK, Zou X, Qu SZ et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG driven by 3-µm OPCPA. IEEE Photonics Technol Lett 31, 1741–1744 (2019). doi: 10.1109/LPT.2019.2944256

    CrossRef Google Scholar

    [191] Wnuk P, Stepanenko Y, Radzewicz C. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier. Opt Express 18, 7911–7916 (2010). doi: 10.1364/OE.18.007911

    CrossRef Google Scholar

    [192] Darginavicčius J, Tamošauskas G, Piskarskas A, Dubietis A. Generation of 30-fs ultraviolet pulses by four-wave optical parametric chirped pulse amplification. Opt Express 18, 16096–16101 (2010). doi: 10.1364/OE.18.016096

    CrossRef Google Scholar

    [193] Mero M, Sipos A, Kurdi G, Osvay K. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme. Opt Express 19, 9646–9655 (2011). doi: 10.1364/OE.19.009646

    CrossRef Google Scholar

    [194] Pelletier E, Sell A, Leitenstorfer A, Miller RJD. Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 µm. Opt Express 20, 27456–27464 (2012). doi: 10.1364/OE.20.027456

    CrossRef Google Scholar

    [195] Valiulis G, Dubietis A, Piskarskas A. Optical parametric amplification of chirped X pulses. Phys Rev A 77, 043824 (2008). doi: 10.1103/PhysRevA.77.043824

    CrossRef Google Scholar

    [196] Qian JY, Peng YJ, Li YY, Wang PF, Shao BJ et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Res 8, 421–425 (2020). doi: 10.1364/PRJ.385190

    CrossRef Google Scholar

    [197] Hanna M, Druon F, Georges P. Fiber optical parametric chirped-pulse amplification in the femtosecond regime. Opt Express 14, 2783–2790 (2006). doi: 10.1364/OE.14.002783

    CrossRef Google Scholar

    [198] Bigourd D, Lago L, Mussot A, Kudlinski A, Gleyze JF et al. High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 µm. Opt Lett 35, 3480–3482 (2010). doi: 10.1364/OL.35.003480

    CrossRef Google Scholar

    [199] Caucheteur C, Bigourd D, Hugonnot E, Szriftgiser P, Kudlinski A et al. Experimental demonstration of optical parametric chirped pulse amplification in optical fiber. Opt Lett 35, 1786–1788 (2010). doi: 10.1364/OL.35.001786

    CrossRef Google Scholar

    [200] Zhou Y, Li Q, Cheung KKY, Yang SG, Chui PC et al. All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes. IEEE Photonics Technol Lett 22, 1330–1332 (2010). doi: 10.1109/LPT.2010.2055557

    CrossRef Google Scholar

    [201] Cristofori V, Lali-Dastjerdi Z, Rishøj LS, Galili M, Peucheret C et al. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers. Opt Express 21, 26044–26051 (2013). doi: 10.1364/OE.21.026044

    CrossRef Google Scholar

    [202] Mussot A, Kudlinski A, d’Augères PB, Hugonnot E. Amplification of ultra-short optical pulses in a two-pump fiber optical parametric chirped pulse amplifier. Opt Express 21, 12197–12203 (2013). doi: 10.1364/OE.21.012197

    CrossRef Google Scholar

    [203] Bigourd D, d’Augères PB, Dubertrand J, Hugonnot E, Mussot A. Ultra-broadband fiber optical parametric amplifier pumped by chirped pulses. Opt Lett 39, 3782–3785 (2014). doi: 10.1364/OL.39.003782

    CrossRef Google Scholar

    [204] Vanvincq O, Fourcade-Dutin C, Mussot A, Hugonnot E, Bigourd D. Ultrabroadband fiber optical parametric amplifiers pumped by chirped pulses. Part 1: analytical model. J Opt Soc Am B 32, 1479–1487 (2015). doi: 10.1364/JOSAB.32.001479

    CrossRef Google Scholar

    [205] Fourcade-Dutin C, Vanvincq O, Mussot A, Hugonnot E, Bigourd D. Ultrabroadband fiber optical parametric amplifier pumped by chirped pulses. Part 2: sub-30-fs pulse amplification at high gain. J Opt Soc Am B 32, 1488–1493 (2015). doi: 10.1364/JOSAB.32.001488

    CrossRef Google Scholar

    [206] Fu W, Wise FW. Normal-dispersion fiber optical parametric chirped-pulse amplification. Opt Lett 43, 5331–5334 (2018). doi: 10.1364/OL.43.005331

    CrossRef Google Scholar

    [207] Fu W, Herda R, Wise FW. Design guidelines for normal-dispersion fiber optical parametric chirped-pulse amplifiers. J Opt Soc Am B 37, 1790–1805 (2020). doi: 10.1364/JOSAB.389445

    CrossRef Google Scholar

    [208] Morin P, Dubertrand J, d’Augères PB, Quiquempois Y, Bouwmans G et al. µJ-level Raman-assisted fiber optical parametric chirped-pulse amplification. Opt Lett 43, 4683–4686 (2018). doi: 10.1364/OL.43.004683

    CrossRef Google Scholar

    [209] Buttolph ML, Sidorenko P, Schaffer CB, Wise FW. Femtosecond optical parametric chirped-pulse amplification in birefringent step-index fiber. Opt Lett 47, 545–548 (2022). doi: 10.1364/OL.447506

    CrossRef Google Scholar

    [210] Qin YK, Ou YH, Cromey B, Batjargal O, Barton JK et al. Watt-level all-fiber optical parametric chirped-pulse amplifier working at 1300 nm. Opt Lett 44, 3422–3425 (2019). doi: 10.1364/OL.44.003422

    CrossRef Google Scholar

    [211] Qin YK, Batjargal O, Cromey B, Kieu K. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification. Opt Express 28, 2317–2325 (2020). doi: 10.1364/OE.384185

    CrossRef Google Scholar

    [212] Mori Y, Kitagawa Y. Double-line terawatt OPCPA laser system for exciting beat wave oscillations. Appl Phys B 110, 57–64 (2013). doi: 10.1007/s00340-012-5251-y

    CrossRef Google Scholar

    [213] Hong KH, Lai CJ, Gkortsas VM, Huang SW, Moses J et al. High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1-µm source: high-order harmonic spectroscopy under macroscopic effects. Phys Rev A 86, 043412 (2012). doi: 10.1103/PhysRevA.86.043412

    CrossRef Google Scholar

    [214] Rothhardt J, Krebs M, Hädrich S, Demmler S, Limpert J et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J Phys 16, 033022 (2014). doi: 10.1088/1367-2630/16/3/033022

    CrossRef Google Scholar

    [215] Geiseler H, Ishii N, Kaneshima K, Kitano K, Kanai T et al. High-energy half-cycle cutoffs in high harmonic and rescattered electron spectra using waveform-controlled few-cycle infrared pulses. J Phys B At Mol Opt Phys 47, 204011 (2014). doi: 10.1088/0953-4075/47/20/204011

    CrossRef Google Scholar

    [216] Lai CJ, Hong KH, Siqueira JP, Krogen P, Chang CL et al. Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft x-ray generation. J Opt 17, 094009 (2015). doi: 10.1088/2040-8978/17/9/094009

    CrossRef Google Scholar

    [217] Rudawski P, Harth A, Guo C, Lorek E, Miranda M et al. Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system. Eur Phys J D 69, 70 (2015). doi: 10.1140/epjd/e2015-50568-y

    CrossRef Google Scholar

    [218] Chevreuil PA, Brunner F, Hrisafov S, Pupeikis J, Phillips CR et al. Water-window high harmonic generation with 0.8-µm and 2.2-µm OPCPAs at 100 kHz. Opt Express 29, 32996–33008 (2021). doi: 10.1364/OE.440273

    CrossRef Google Scholar

    [219] Krebs M, Hädrich S, Demmler S, Rothhardt J, Zaïr A et al. Towards isolated attosecond pulses at megahertz repetition rates. Nat Photonics 7, 555–559 (2013). doi: 10.1038/nphoton.2013.131

    CrossRef Google Scholar

    [220] Ren XM, Li J, Yin YC, Zhao K, Chew A et al. Attosecond light sources in the water window. J Opt 20, 023001 (2018). doi: 10.1088/2040-8986/aaa394

    CrossRef Google Scholar

    [221] Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate. Optica 9, 145–151 (2022). doi: 10.1364/OPTICA.443521

    CrossRef Google Scholar

    [222] Osolodkov M, Furch FJ, Schell F, Šušnjar P, Cavalcante F et al. Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate. J Phys B At Mol Opt Phys 53, 194003 (2020). doi: 10.1088/1361-6455/aba77d

    CrossRef Google Scholar

    [223] Popmintchev T, Chen MC, Popmintchev D, Arpin P, Brown S et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012). doi: 10.1126/science.1218497

    CrossRef Google Scholar

    [224] Stein GJ, Keathley PD, Krogen P, Liang HK, Siqueira JP et al. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source. J Phys B At Mol Opt Phys 49, 155601 (2016). doi: 10.1088/0953-4075/49/15/155601

    CrossRef Google Scholar

    [225] Ishii N, Kaneshima K, Kanai T, Watanabe S, Itatani J. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics. J Opt 20 014003 (2018).

    Google Scholar

    [226] Popmintchev D, Galloway BR, Chen MC, Dollar F, Mancuso CA et al. Near- and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys Rev Lett 120, 093002 (2018). doi: 10.1103/PhysRevLett.120.093002

    CrossRef Google Scholar

    [227] Hoff D, Furch FJ, Witting T, Rühle K, Adolph D et al. Continuous every-single-shot carrier-envelope phase measurement and control at 100 kHz. Opt Lett 43, 3850–3853 (2018). doi: 10.1364/OL.43.003850

    CrossRef Google Scholar

    [228] Mitrofanov AV, Sidorov-Biryukov DA, Rozhko MV, Ryabchuk SV, Voronin AA el al. High-order harmonic generation from a solid-surface plasma by relativistic-intensity sub-100-fs mid-infrared pulses. Opt Lett 43, 5571–5574 (2018). doi: 10.1364/OL.43.005571

    CrossRef Google Scholar

    [229] Weisshaupt J, Juvé V, Holtz M, Ku S, Woerner M et al. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat Photonics 8, 927–930 (2014). doi: 10.1038/nphoton.2014.256

    CrossRef Google Scholar

    [230] Puppin M, Deng Y, Nicholson CW, Feldl J, Schröter NBM et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev Sci Instrum 90, 023104 (2019). doi: 10.1063/1.5081938

    CrossRef Google Scholar

    [231] Wolter B, Pullen MG, Baudisch M, Sclafani M, Hemmer M et al. Strong-field physics with mid-IR fields. Phys Rev X 5, 021034 (2015).

    Google Scholar

    [232] Amini K, Sclafani M, Steinle T, Le AT, Sanchez A et al. Imaging the Renner-Teller effect using laser-induced electron diffraction. Proc Natl Acad Sci USA 116, 8173–8177 (2019). doi: 10.1073/pnas.1817465116

    CrossRef Google Scholar

    [233] Woodbury D, Feder L, Shumakova V, Gollner C, Schwartz R et al. Laser wakefield acceleration with mid-IR laser pulses. Opt Lett 43, 1131–1134 (2018). doi: 10.1364/OL.43.001131

    CrossRef Google Scholar

    [234] Samsonova Z, Höfer S, Kaymak V, Ališauskas S, Shumakova V et al. Relativistic interaction of long-wavelength ultrashort laser pulses with nanowires. Phys Rev X 9, 021029 (2019).

    Google Scholar

    [235] Manzoni C, Mücke OD, Cirmi G, Fang SB, Moses J et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photon Rev 9, 129–171 (2015). doi: 10.1002/lpor.201400181

    CrossRef Google Scholar

    [236] Huang SW, Cirmi G, Moses J, Hong KH, Bhardwaj S et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat Photonics 5, 475–479 (2011). doi: 10.1038/nphoton.2011.140

    CrossRef Google Scholar

    [237] Çankaya H, Calendron AL, Zhou C, Chia SH, Mücke OD et al. 40-µJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers. Opt Express 24, 25169–25180 (2016). doi: 10.1364/OE.24.025169

    CrossRef Google Scholar

    [238] Muschet AA, De Andres A, Fischer P, Salh R, Veisz L. Utilizing the temporal superresolution approach in an optical parametric synthesizer to generate multi-TW sub-4-fs light pulses. Opt Express 30, 4374–4380 (2022). doi: 10.1364/OE.447846

    CrossRef Google Scholar

    [239] Huang SW, Cirmi G, Moses J, Hong KH, Bhardwaj S et al. Optical waveform synthesizer and its application to high-harmonic generation. J Phys B At Mol Opt Phys 45, 074009 (2012). doi: 10.1088/0953-4075/45/7/074009

    CrossRef Google Scholar

    [240] Biegert J, Bates PK, Chalus O. New mid-infrared light sources. IEEE J Sel Top Quantum Electron 18, 531–540 (2012). doi: 10.1109/JSTQE.2011.2135842

    CrossRef Google Scholar

    [241] Luther BM, Tracy KM, Gerrity M, Brown S, Krummel AT. 2D IR spectroscopy at 100 kHz utilizing a mid-IR OPCPA laser source. Opt Express 24, 4117–4127 (2016). doi: 10.1364/OE.24.004117

    CrossRef Google Scholar

    [242] Suchowski H, Krogen PR, Huang SW, Kärtner FX, Moses J. Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion. Opt Express 21, 28892–28901 (2013). doi: 10.1364/OE.21.028892

    CrossRef Google Scholar

    [243] Krogen P, Suchowski H, Liang HK, Flemens N, Hong KH et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat Photonics 11, 222–226 (2017). doi: 10.1038/nphoton.2017.34

    CrossRef Google Scholar

    [244] Kartashov D, Ališauskas S, Pugžlys A, Voronin A, Zheltikov A et al. White light generation over three octaves by femtosecond filament at 3.9 µm in argon. Opt Lett 37, 3456–3458 (2012). doi: 10.1364/OL.37.003456

    CrossRef Google Scholar

    [245] Mitrofanov AV, Voronin AA, Mitryukovskiy SI, Sidorov-Biryukov DA, Pugžlys A et al. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics. Opt Lett 40, 2068–2071 (2015). doi: 10.1364/OL.40.002068

    CrossRef Google Scholar

    [246] Kartashov D, Ališauskas S, Pugžlys A, Voronin A, Zheltikov A et al. Mid-infrared laser filamentation in molecular gases. Opt Lett 38, 3194–3197 (2013). doi: 10.1364/OL.38.003194

    CrossRef Google Scholar

    [247] Kartashov D, Ališauskas S, Pugzdžlys A, Voronin AA, Zheltikov AM et al. Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity. Opt Lett 37, 2268–2270 (2012). doi: 10.1364/OL.37.002268

    CrossRef Google Scholar

    [248] Kartashov D, Ališauskas S, Andriukaitis G, Pugžlys A, Shneider M et al. Free-space nitrogen gas laser driven by a femtosecond filament. Phys Rev A 86, 033831 (2012). doi: 10.1103/PhysRevA.86.033831

    CrossRef Google Scholar

    [249] Malevich PN, Maurer R, Kartashov D, Ališauskas S, Lanin AA et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Opt Lett 40, 2469–2472 (2015). doi: 10.1364/OL.40.002469

    CrossRef Google Scholar

    [250] Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Mitryukovsky SI, Fedotov AB et al. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica 3, 299–302 (2016). doi: 10.1364/OPTICA.3.000299

    CrossRef Google Scholar

    [251] Mitrofanov AV, Voronin AA, Rozhko MV, Sidorov-Biryukov DA, Fedotov AB et al. Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air. Optica 4, 1405–1408 (2017). doi: 10.1364/OPTICA.4.001405

    CrossRef Google Scholar

    [252] Voronin AA, Mitrofanov AV, Sidorov-Biryukov DA, Fedotov AB, Pugžlys A et al. Free-beam soliton self-compression in air. J Opt 20, 025504 (2018). doi: 10.1088/2040-8986/aa9bcc

    CrossRef Google Scholar

    [253] Shumakova V, Ališauskas S, Malevich P, Voronin AA, Mitrofanov AV et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR. Opt Lett 44, 2173–2176 (2019). doi: 10.1364/OL.44.002173

    CrossRef Google Scholar

    [254] Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Rozhko MV, Stepanov EA et al. Mapping anomalous dispersion of air with ultrashort mid-infrared pulses. Sci Rep 7, 2103 (2017). doi: 10.1038/s41598-017-01598-3

    CrossRef Google Scholar

    [255] Silva F, Austin DR, Thai A, Baudisch M, Hemmer M et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat Commun 3, 807 (2012). doi: 10.1038/ncomms1816

    CrossRef Google Scholar

    [256] Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J. Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics. Opt Express 21, 28095–28102 (2013). doi: 10.1364/OE.21.028095

    CrossRef Google Scholar

    [257] Liang HK, Krogen P, Grynko R, Novak O, Chang CL et al. Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics. Opt Lett 40, 1069–1072 (2015). doi: 10.1364/OL.40.001069

    CrossRef Google Scholar

    [258] Hudson DD, Baudisch M, Werdehausen D, Eggleton BJ, Biegert J. 1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA. Opt Lett 39, 5752–5755 (2014). doi: 10.1364/OL.39.005752

    CrossRef Google Scholar

    [259] Zheltikov A. Multioctave supercontinua and subcycle lightwave electronics [Invited]. J Opt Soc Am B 36, A168–A181 (2019). doi: 10.1364/JOSAB.36.00A168

    CrossRef Google Scholar

    [260] Elu U, Maidment L, Vamos L, Tani F, Novoa D et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat Photonics 15, 277–280 (2021). doi: 10.1038/s41566-020-00735-1

    CrossRef Google Scholar

    [261] Mitrofanov AV, Sidorov-Biryukov DA, Nazarov MM, Voronin AA, Rozhko MV et al. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 7, 15–19 (2020). doi: 10.1364/OPTICA.7.000015

    CrossRef Google Scholar

    [262] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun 11, 292 (2020). doi: 10.1038/s41467-019-14206-x

    CrossRef Google Scholar

    [263] Gollner C, Shalaby M, Brodeur C, Astrauskas I, Jutas R et al. Highly efficient THz generation by optical rectification of mid-IR pulses in DAST. APL Photonics 6, 046105 (2021). doi: 10.1063/5.0037235

    CrossRef Google Scholar

    [264] Jovanovic I, Brown C, Wattellier B, Nielsen N, Molander W et al. Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification. Rev Sci Instrum 75, 5193–5202 (2004). doi: 10.1063/1.1819382

    CrossRef Google Scholar

    [265] Clady R, Coustillier G, Gastaud M, Sentis M, Spiga P et al. Architecture of a blue high contrast multiterawatt ultrashort laser. Appl Phys B 82, 347–358 (2006). doi: 10.1007/s00340-005-2081-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(6810) PDF downloads(1312) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint