Citation: | Dubietis A, Matijošius A. Table-top optical parametric chirped pulse amplifiers: past and present. Opto-Electron Adv 6, 220046 (2023). doi: 10.29026/oea.2023.220046 |
[1] | Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun 56, 219–221 (1985). doi: 10.1016/0030-4018(85)90120-8 |
[2] | Mourou G. Nobel Lecture: extreme light physics and application. Rev Mod Phys 91, 030501 (2019). doi: 10.1103/RevModPhys.91.030501 |
[3] | Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt Commun 88, 437–440 (1992). doi: 10.1016/0030-4018(92)90070-8 |
[4] | Cerullo G, De Silvestri S. Ultrafast optical parametric amplifiers. Rev Sci Instrum 74, 1–18 (2003). doi: 10.1063/1.1523642 |
[5] | Brida D, Manzoni C, Cirmi G, Marangoni M, Bonora S et al. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J Opt 12, 013001 (2010). doi: 10.1088/2040-8978/12/1/013001 |
[6] | Manzoni C, Cerullo G. Design criteria for ultrafast optical parametric amplifiers. J Opt 18, 103501 (2016). doi: 10.1088/2040-8978/18/10/103501 |
[7] | Butkus R, Danielius R, Dubietis A, Piskarskas A, Stabinis A. Progress in chirped pulse optical parametric amplifiers. Appl Phys B 79, 693–700 (2004). doi: 10.1007/s00340-004-1614-3 |
[8] | Dubietis A, Butkus R, Piskarskas AP. Trends in chirped pulse optical parametric amplification. IEEE J Sel Top Quantum Electron 12, 163–172 (2006). doi: 10.1109/JSTQE.2006.871962 |
[9] | Witte S, Eikema KSE. Ultrafast optical parametric chirped-pulse amplification. IEEE J Sel Top Quantum Electron 18, 296–307 (2012). doi: 10.1109/JSTQE.2011.2118370 |
[10] | Vaupel A, Bodnar N, Webb B, Shah L, Richardson MC. Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt Eng 53, 051507 (2013). doi: 10.1117/1.OE.53.5.051507 |
[11] | Rothhardt J, Hädrich S, Delagnes JC, Cormier E, Limpert J. High average power near-infrared few-cycle lasers. Laser Photon Rev 11, 1700043 (2017). doi: 10.1002/lpor.201700043 |
[12] | Ciriolo AG, Negro M, Devetta M, Cinquanta E, Faccialà D et al. Optical parametric amplification techniques for the generation of high-energy few-optical-cycles IR pulses for strong field applications. Appl Sci 7, 265 (2017). doi: 10.3390/app7030265 |
[13] | Danson CN, Haefner C, Bromage J, Butcher T, Chanteloup JCF et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci Eng 7, e54 (2019). doi: 10.1017/hpl.2019.36 |
[14] | Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J. Ultrashort pulse generation in the mid-IR. Prog Quantum Electron 43, 1–30 (2015). doi: 10.1016/j.pquantelec.2015.07.001 |
[15] | Fattahi H, Barros HG, Gorjan M, Nubbemeyer T, Alsaif B et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014). doi: 10.1364/OPTICA.1.000045 |
[16] | Piskarskas A, Stabinis A, Yankauskas A. Phase phenomena in parametric amplifiers and generators of ultrashort light pulses. Sov Phys Usp 29, 869–879 (1986). |
[17] | Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt Commun 144, 125–133 (1997). doi: 10.1016/S0030-4018(97)00399-4 |
[18] | Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL et al. Prospects for a multi-PW source using optical parametric chirped pulse amplifiers. Laser Part Beams 17, 331–340 (1999). doi: 10.1017/S0263034699172203 |
[19] | Ross IN, Collier JL, Matousek P, Danson CN, Neely D et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl Opt 39, 2422–2427 (2000). doi: 10.1364/AO.39.002422 |
[20] | Yang XD, Xu ZZ, Leng YX, Lu HH, Lin LH et al. Multiterawatt laser system based on optical parametric chirped pulse amplification. Opt Lett 27, 1135–1137 (2002). doi: 10.1364/OL.27.001135 |
[21] | Chekhlov OV, Collier JL, Ross IN, Bates PK, Notley M et al. 35J broadband femtosecond optical parametric chirped pulse amplification system. Opt Lett 31, 3665–3667 (2006). doi: 10.1364/OL.31.003665 |
[22] | Lozhkarev VV, Freidman GI, Ginzburg VN, Katin EV, Khazanov EA et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys Lett 4, 421–427 (2007). doi: 10.1002/lapl.200710008 |
[23] | Yu LH, Liang XY, Xu L, Li WQ, Peng C et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt Lett 40, 3412–3415 (2015). doi: 10.1364/OL.40.003412 |
[24] | Zeng XM, Zhou KN, Zuo YL, Zhu QH, Su JQ et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt Lett 42, 2014–2017 (2017). doi: 10.1364/OL.42.002014 |
[25] | Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G et al. Ultra-broadband all-OPCPA petawatt facility fully based on LBO. High Power Laser Sci Eng 8, e31 (2020). doi: 10.1017/hpl.2020.31 |
[26] | Jovanovic I, Comaskey BJ, Ebbers CA, Bonner RA, Pennington DM et al. Optical parametric chirped-pulse amplifier as an alternative to Ti: sapphire regenerative amplifiers. Appl Opt 41, 2923–2929 (2002). doi: 10.1364/AO.41.002923 |
[27] | Hauri CP, Schlup P, Arisholm G, Biegert J, Keller U. Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti: sapphire oscillator. Opt Lett 29, 1369–1371 (2004). doi: 10.1364/OL.29.001369 |
[28] | Kakehata M, Takada H, Kobayashi Y, Torizuka K, Takamiya H et al. Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies. Opt Express 12, 2070–2080 (2004). doi: 10.1364/OPEX.12.002070 |
[29] | Xu L, Tempea G, Poppe A, Lenzner M, Spielmann C et al. High-power sub-10-fs Ti: sapphire oscillators. Appl Phys B 65, 151–159 (1997). doi: 10.1007/s003400050260 |
[30] | Ell R, Morgner U, Kärtner FX, Fujimoto JG, Ippen EP et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: sapphire laser. Opt Lett 26, 373–375 (2001). doi: 10.1364/OL.26.000373 |
[31] | Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78, 1135–1184 (2006). doi: 10.1103/RevModPhys.78.1135 |
[32] | Dubietis A. Tamošauskas G, Šuminas R, Jukna V, Couairon A. Ultrafast supercontinuum generation in bulk condensed media. Lith J Phys 57, 113–157 (2017). |
[33] | Nisoli M, Stagira S, De Silvestri S, Svelto O, Sartania S et al. A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses. Appl Phys B 65, 189–196 (1997). doi: 10.1007/s003400050263 |
[34] | Fuji T, Apolonski A, Krausz F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Opt Lett 29, 632–634 (2004). |
[35] | Adamonis J, Antipenkov R, Kolenda J, Michailovas A, Piskarskas AP et al. High-energy Nd: YAG-amplification system for OPCPA pumping. Quantum Electron 42, 567–574 (2012). doi: 10.1070/QE2012v042n07ABEH014689 |
[36] | Su HP, Peng YJ, Chen JC, Li YY, Wang PF et al. A high-energy, 100 Hz, picosecond laser for OPCPA pumping. Appl Sci 7, 997 (2017). doi: 10.3390/app7100997 |
[37] | Yang SS, Cui ZJ, Sun ZM, Zhang P, Liu DA. Compact 50 W all-solid-state picosecond laser system at 1 kHz. Appl Sci 10, 6891 (2020). doi: 10.3390/app10196891 |
[38] | Mecseki K, Bigourd D, Patankar S, Stuart NH, Smith RA. Flat-top picosecond pulses generated by chirped spectral modulation from a Nd: YLF regenerative amplifier for pumping few-cycle optical parametric amplifiers. Appl Opt 53, 2229–2235 (2014). doi: 10.1364/AO.53.002229 |
[39] | Heese C, Oehler AE, Gallmann L, Keller U. High-energy picosecond Nd: YVO4 slab amplifier for OPCPA pumping. Appl Phys B 103, 5–8 (2011). doi: 10.1007/s00340-011-4509-0 |
[40] | Hemmer M, Vaupel A, Wohlmuth M, Richardson M. OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering. Appl Phys B 106, 599–603 (2012). |
[41] | Liu JX, Wang W, Wang ZH, Lv ZG, Zhang ZY et al. Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems. Appl Sci 5, 1590–1602 (2015). doi: 10.3390/app5041590 |
[42] | Michailovas K, Zaukevičius A, Petrauskienė V, Smilgevičius V, Balickas S et al. Sub-20 ps high energy pulses from 1 kHz Neodymium-based CPA. Lith J Phys 58, 159–169 (2018). |
[43] | Vaupel A, Bodnar N, Webb B, Shah L, Hemmer M et al. Hybrid master oscillator power amplifier system providing 10 mJ, 32 W, and 50 MW pulses for optical parametric chirped-pulse amplification pumping. J Opt Soc Am B 30, 3278–3283 (2013). doi: 10.1364/JOSAB.30.003278 |
[44] | Michailovas K, Baltuska A, Pugzlys A, Smilgevicius V, Michailovas A et al. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers. Opt Express 24, 22261–22271 (2016). doi: 10.1364/OE.24.022261 |
[45] | Antipenkov R, Varanavičius A, Zaukevičius A, Piskarskas AP. Femtosecond Yb: KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems. Opt Express 19, 3519–3524 (2011). doi: 10.1364/OE.19.003519 |
[46] | João CP, Wagner F, Körner J, Hein J, Gottschall T et al. A 10-mJ-level compact CPA system based on Yb: KGW for ultrafast optical parametric amplifier pumping. Appl Phys B 118, 401–407 (2015). doi: 10.1007/s00340-015-6003-6 |
[47] | Klingebiel S, Wandt C, Skrobol C, Ahmad I, Trushin SA et al. High energy picosecond Yb: YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. Opt Express 19, 5357–5363 (2011). doi: 10.1364/OE.19.005357 |
[48] | Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt Express 19, 255–260 (2011). doi: 10.1364/OE.19.000255 |
[49] | Zapata LE, Reichert F, Hemmer M, Kärtner FX. 250 W average power, 100 kHz repetition rate cryogenic Yb: YAG amplifier for OPCPA pumping. Opt Lett 41, 492–495 (2016). doi: 10.1364/OL.41.000492 |
[50] | Mackonis P, Rodin AM. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb: YAG rods for seeding and pumping of OPCPA. Opt Express 28, 1261–1268 (2020). doi: 10.1364/OE.380907 |
[51] | Hubka Z, Antipenkov R, Boge R, Erdman E, Greco M et al. 120 mJ, 1 kHz, picosecond laser at 515 nm. Opt Lett 24, 5655–5658 (2021). |
[52] | Schulz M, Riedel R, Willner A, Mans T, Schnitzler C et al. Yb: YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt Lett 36, 2456–2458 (2011). doi: 10.1364/OL.36.002456 |
[53] | Schmidt BE, Hage A, Mans T, Légaré F, Wörner HJ. Highly stable, 54mJ Yb-InnoSlab laser platform at 0.5kW average power. Opt Express 25, 17549–17555 (2017). doi: 10.1364/OE.25.017549 |
[54] | Malevich P, Andriukaitis G, Flöry T, Verhoef AJ, Fernández A et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Opt Lett 38, 2746–2749 (2013). doi: 10.1364/OL.38.002746 |
[55] | Hemmer M, Sánchez D, Jelínek M, Smirnov V, Jelinkova H et al. 2-μm wavelength, high-energy Ho: YLF chirped-pulse amplifier for mid-infrared OPCPA. Opt Lett 40, 451–454 (2015). doi: 10.1364/OL.40.000451 |
[56] | von Grafenstein L, Bock M, Ueberschaer D, Griebner U, Elsaesser T. Picosecond 34 mJ pulses at kHz repetition rates from a Ho: YLF amplifier at 2 μm wavelength. Opt Express 23, 33142–33149 (2015). doi: 10.1364/OE.23.033142 |
[57] | von Grafenstein L, Bock M, Ueberschaer D, Koç A, Griebner U et al. 2.05 μm chirped pulse amplification system at a 1 kHz repetition rate-2.4 ps pulses with 17 GW peak power. Opt Lett 45, 3836–3839 (2020). doi: 10.1364/OL.395496 |
[58] | Prandolini MJ, Riedel R, Schulz M, Hage A, Höppner H et al. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier. Opt Express 22, 1594–1607 (2014). doi: 10.1364/OE.22.001594 |
[59] | Riedel R, Rothhardt J, Beil K, Gronloh B, Klenke A et al. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification. Opt Express 22, 17607–17619 (2014). doi: 10.1364/OE.22.017607 |
[60] | Galletti M, Pires H, Hariton V, Alves J, Oliveira P et al. Ultra-broadband near-infrared NOPAs based on the nonlinear crystals BiBO and YCOB. High Power Laser Sci Eng 8, e29 (2020). doi: 10.1017/hpl.2020.27 |
[61] | Baudisch M, Hemmer M, Pires H, Biegert J. Performance of MgO: PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power. Opt Lett 39, 5802–5805 (2014). doi: 10.1364/OL.39.005802 |
[62] | Schunemann PG, Zawilski KT, Pomeranz LA, Creeden DJ, Budni PA. Advances in nonlinear optical crystals for mid-infrared coherent sources. J Opt Soc Am B 33, D36–D43 (2016). doi: 10.1364/JOSAB.33.000D36 |
[63] | Tian K, He LZ, Yang XM, Liang HK. Mid-infrared few-cycle pulse generation and amplification. Photonics 8, 290 (2021). doi: 10.3390/photonics8080290 |
[64] | Liu JS, Ma JG, Wang J, Yuan P, Xie GQ et al. Toward 5.2 μm terawatt few-cycle pulses via optical parametric chirped-pulse amplification with oxide La3Ga5.5Nb0.5O14 crystals. High Power Laser Sci Eng 7, e61 (2019). doi: 10.1017/hpl.2019.47 |
[65] | Namboodiri M, Luo C, Indorf G, Golz T, Grguraš I et al. Optical properties of Li-based nonlinear crystals for high power mid-IR OPCPA pumped at 1 μm under realistic operational conditions. Opt Mater Express 11, 231–239 (2021). doi: 10.1364/OME.414478 |
[66] | Zinkstok RT, Witte S, Hogervorst W, Eikema KSE. High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control. Opt Lett 30, 78–80 (2005). doi: 10.1364/OL.30.000078 |
[67] | Witte S, Zinkstok RT, Hogervorst W, Eikema KSE. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. Opt Express 13, 4903–4908 (2005). doi: 10.1364/OPEX.13.004903 |
[68] | Ishii N, Turi L, Yakovlev VS, Fuji T, Krausz F et al. Multimillijoule chirped parametric amplification of few-cycle pulses. Opt Lett 30, 567–569 (2005). doi: 10.1364/OL.30.000567 |
[69] | Stepanenko Y, Radzewicz C. Multipass non-collinear optical parametric amplifier for femtosecond pulses. Opt Express 14, 779–785 (2006). doi: 10.1364/OPEX.14.000779 |
[70] | Witte S, Zinkstok RT, Wolf AL, Hogervorst W, Ubachs W et al. A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification. Opt Express 14, 8168–8177 (2006). doi: 10.1364/OE.14.008168 |
[71] | Wnuk P, Stepanenko Y, Radzewicz C. Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage. Opt Express 17, 15264–15273 (2009). doi: 10.1364/OE.17.015264 |
[72] | Tavella F, Marcinkevičius A, Krausz F. 90 mJ parametric chirped pulse amplification of 10 fs pulses. Opt Express 14, 12822–12827 (2006). doi: 10.1364/OE.14.012822 |
[73] | Tavella F, Nomura Y, Veisz L, Pervak V, Marcinkevičius A et al. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt Lett 32, 2227–2229 (2007). doi: 10.1364/OL.32.002227 |
[74] | Kiriyama H, Mori M, Nakai Y, Yamamoto Y, Tanoue M et al. High-energy, high-contrast, multiterawatt laser pulses by optical parametric chirped-pulse amplification. Opt Lett 32, 2315–2317 (2007). doi: 10.1364/OL.32.002315 |
[75] | Herrmann D, Veisz L, Tautz R, Tavella F, Schmid K et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt Lett 34, 2459–2461 (2009). doi: 10.1364/OL.34.002459 |
[76] | Liu XD, Xu L, Zhang M, Pan SL, Liang XY. Broadband optical parametric chirped pulse amplification in K3B6O10Br crystal near 800 nm. Laser Phys Lett 14, 095403 (2017). doi: 10.1088/1612-202X/aa7f14 |
[77] | Yang SH, Liang X, Xie XL, Yang QW, Tu XN et al. Ultra-broadband high conversion efficiency optical parametric chirped-pulse amplification based on YCOB crystals. Opt Express 28, 11645–11651 (2020). doi: 10.1364/OE.385790 |
[78] | Kessel A, Leshchenko VE, Jahn O, Krüger M, Münzer A et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA. Optica 5, 434–442 (2018). doi: 10.1364/OPTICA.5.000434 |
[79] | Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A et al. 1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz. Opt Lett 32, 2487–2489 (2007). doi: 10.1364/OL.32.002487 |
[80] | Adachi S, Ishii N, Kanai T, Kosuge A, Itatani J et al. 5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz. Opt Express 16, 14341–14352 (2008). doi: 10.1364/OE.16.014341 |
[81] | Adachi S, Ishii N, Nomura Y, Kobayashi Y, Itatani J et al. 1.2 mJ sub-4-fs source at 1 kHz from an ionizing gas. Opt Lett 35, 980–982 (2010). doi: 10.1364/OL.35.000980 |
[82] | Batysta F, Antipenkov R, Green JT, Naylon JA, Novák J et al. Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond-level relative timing jitter. Opt Express 22, 30281–30286 (2014). doi: 10.1364/OE.22.030281 |
[83] | Batysta F, Antipenkov R, Novák J, Green JT, Naylon JA et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs. Opt Express 24, 17843–17848 (2016). doi: 10.1364/OE.24.017843 |
[84] | Bakule P, Antipenkov R, Novák J, Batysta F, Boge R et al. Readiness of L1 ALLEGRA laser system for user operation at ELI beamlines. In OSA High-brightness Sources and Light-driven Interactions Congress 2020 HF1B. 7 (OSA, 2020). |
[85] | Prinz S, Schnitzenbaumer M, Potamianos D, Schultze M, Stark S et al. Thin-disk pumped optical parametric chirped pulse amplifier delivering CEP-stable multi-mJ few-cycle pulses at 6 kHz. Opt Express 26, 1108–1124 (2018). doi: 10.1364/OE.26.001108 |
[86] | Stanislauskas T, Budriūnas R, Antipenkov R, Zaukevičius A, Adamonis J et al. Table top TW-class OPCPA system driven by tandem femtosecond Yb: KGW and picosecond Nd: YAG lasers. Opt Express 22, 1865–1870 (2014). doi: 10.1364/OE.22.001865 |
[87] | Budriūnas R, Stanislauskas T, Varanavičius A. Passively CEP-stabilized frontend for few cycle terawatt OPCPA system. J Opt 17, 094008 (2015). doi: 10.1088/2040-8978/17/9/094008 |
[88] | Budriūnas R, Stanislauskas T, Adamonis J, Aleknavičius A, Veitas G et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt Express 25, 5797–5806 (2017). doi: 10.1364/OE.25.005797 |
[89] | Toth S, Stanislauskas T, Balciunas I, Budriunas R, Adamonis J et al. SYLOS lasers – the frontier of few-cycle, multi-TW, kHz lasers for ultrafast applications at extreme light infrastructure attosecond light pulse source. J Phys Photonics 2, 045003 (2020). doi: 10.1088/2515-7647/ab9fe1 |
[90] | Kretschmar M, Tuemmler J, Schütte B, Hoffmann A, Senfftleben B et al. Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses. Opt Express 28, 34574–34585 (2020). doi: 10.1364/OE.404077 |
[91] | Danilevičius R, Zaukevičius A, Budriūnas R, Michailovas A, Rusteika N. Femtosecond wavelength-tunable OPCPA system based on picosecond fiber laser seed and picosecond DPSS laser pump. Opt Express 24, 17532–17540 (2016). doi: 10.1364/OE.24.017532 |
[92] | Rothhardt J, Hädrich S, Limpert J, Tünnermann A. 80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6. Opt Express 17, 2508–2517 (2009). doi: 10.1364/OE.17.002508 |
[93] | Rothhardt J, Hädrich S, Gottschall T, Clausnitzer T, Limpert J et al. Compact fiber amplifier pumped OPCPA system delivering gigawatt peak power 35 fs pulses. Opt Express 17, 24130–24136 (2009). doi: 10.1364/OE.17.024130 |
[94] | Tavella F, Willner A, Rothhardt J, Hädrich S, Seise E et al. Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA. Opt Express 18, 4689–4694 (2010). doi: 10.1364/OE.18.004689 |
[95] | Rothhardt J, Hädrich S, Seise E, Krebs M, Tavella F et al. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system. Opt Express 18, 12719–12726 (2010). doi: 10.1364/OE.18.012719 |
[96] | Hädrich S, Demmler S, Rothhardt J, Jocher C, Limpert J et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification. Opt Lett 36, 313–315 (2011). doi: 10.1364/OL.36.000313 |
[97] | Rothhardt J, Demmler S, Hädrich S, Limpert J, Tünnermann A. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt Express 20, 10870–10878 (2012). doi: 10.1364/OE.20.010870 |
[98] | Schultze M, Binhammer T, Steinmann A, Palmer G, Emons M et al. Few-cycle OPCPA system at 143 kHz with more than 1 μJ of pulse energy. Opt Express 18, 2836–2841 (2010). doi: 10.1364/OE.18.002836 |
[99] | Schultze M, Binhammer T, Palmer G, Emons M, Lang T et al. Multi-μJ, CEP-stabilized, two-cycle pulses from an OPCPA system with up to 500 kHz repetition rate. Opt Express 18, 27291–27297 (2010). doi: 10.1364/OE.18.027291 |
[100] | Herrmann D, Homann C, Tautz R, Scharrer M, Russell PSJ et al. Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping. Opt Express 18, 18752–18762 (2010). doi: 10.1364/OE.18.018752 |
[101] | Harth A, Schultze M, Lang T, Binhammer T, Rausch S et al. Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR. Opt Express 20, 3076–3081 (2012). doi: 10.1364/OE.20.003076 |
[102] | Ahrens J, Prochnow O, Binhammer T, Lang T, Schulz B et al. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier. Opt Express 24, 8074–8080 (2016). doi: 10.1364/OE.24.008074 |
[103] | Matyschok J, Lang T, Binhammer T, Prochnow O, Rausch S et al. Temporal and spatial effects inside a compact and CEP stabilized, few-cycle OPCPA system at high repetition rates. Opt Express 21, 29656–29665 (2013). doi: 10.1364/OE.21.029656 |
[104] | Harth A, Guo C, Cheng YC, Losquin A, Miranda M et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA. J Opt 20, 014007 (2018). doi: 10.1088/2040-8986/aa9b04 |
[105] | Prinz S, Häfner M, Schultze M, Teisset CY, Bessing R et al. Active pump-seed-pulse synchronization for OPCPA with sub-2-fs residual timing jitter. Opt Express 22, 31050–31056 (2014). doi: 10.1364/OE.22.031050 |
[106] | Prinz S, Haefner M, Teisset CY, Bessing R, Michel K et al. CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power. Opt Express 23, 1388–1394 (2015). doi: 10.1364/OE.23.001388 |
[107] | Hrisafov S, Pupeikis J, Chevreuil PA, Brunner F, Phillips CR et al. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt Express 28, 40145–40154 (2020). doi: 10.1364/OE.412564 |
[108] | Furch FJ, Witting T, Giree A, Luan C, Schell F et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from a noncollinear optical parametric amplifier. Opt Lett 42, 2495–2498 (2017). doi: 10.1364/OL.42.002495 |
[109] | Witting T, Furch FJ, Vrakking MJJ. Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system. J Opt 20, 044003 (2018). doi: 10.1088/2040-8986/aaadc3 |
[110] | Lu CH, Witting T, Husakou A, Vrakking MJJ, Kung AH et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt Express 26, 8941–8956 (2018). doi: 10.1364/OE.26.008941 |
[111] | Riedel R, Schulz M, Prandolini MJ, Hage A, Höppner H et al. Long-term stabilization of high power optical parametric chirped-pulse amplifiers. Opt Express 21, 28987–28999 (2013). doi: 10.1364/OE.21.028987 |
[112] | Höppner H, Hage A, Tanikawa T, Schulz M, Riedel R et al. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers. New J Phys 17, 053020 (2015). doi: 10.1088/1367-2630/17/5/053020 |
[113] | Puppin M, Deng YP, Prochnow O, Ahrens J, Binhammer T et al. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser. Opt Express 23, 1491–1497 (2015). doi: 10.1364/OE.23.001491 |
[114] | Mecseki K, Windeler MKR, Miahnahri A, Robinson JS, Fraser JM et al. High average power 88 W OPCPA system for high-repetition-rate experiments at the LCLS x-ray free-electron laser. Opt Lett 44, 1257–1260 (2019). doi: 10.1364/OL.44.001257 |
[115] | Riedel R, Stephanides A, Prandolini MJ, Gronloh B, Jungbluth B et al. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers. Opt Lett 39, 1422–1424 (2014). doi: 10.1364/OL.39.001422 |
[116] | Indra L, Batysta F, Hříbek P, Novák J, Hubka Z et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA. Opt Lett 42, 843–846 (2017). doi: 10.1364/OL.42.000843 |
[117] | Mackonis P, Rodin AM. OPCPA investigation with control over the temporal shape of 1.2 ps pump pulses. Opt Express 28, 12020–12027 (2020). doi: 10.1364/OE.383754 |
[118] | Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S et al. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier. Opt Lett 37, 4182–4184 (2012). doi: 10.1364/OL.37.004182 |
[119] | Ishii N, Kaneshima K, Kanai T, Watanabe S, Itatani J. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization. J Opt 17, 094001 (2015). |
[120] | Yin YC, Li J, Ren XM, Zhao K, Wu Y et al. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm. Opt Lett 41, 1142–1145 (2016). doi: 10.1364/OL.41.001142 |
[121] | Fuji T, Ishii N, Teisset CY, Gu X, Metzger T et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1μm. Opt Lett 31, 1103–1105 (2006). doi: 10.1364/OL.31.001103 |
[122] | Gu X, Marcus G, Deng YP, Metzger T, Teisset C et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength. Opt Express 17, 62–69 (2009). doi: 10.1364/OE.17.000062 |
[123] | Moses J, Huang SW, Hong KH, Mücke OD, Falcão-Filho EL et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt Lett 34, 1639–1641 (2009). doi: 10.1364/OL.34.001639 |
[124] | Hong KH, Huang SW, Moses J, Fu X, Lai CJ et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb: YAG laser. Opt Express 19, 15538–15548 (2011). doi: 10.1364/OE.19.015538 |
[125] | Hong KH, Lai CJ, Siqueira JP, Krogen P, Moses J et al. Multi-mJ, kHz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation. Opt Lett 39, 3145–3148 (2014). doi: 10.1364/OL.39.003145 |
[126] | Deng YP, Schwarz A, Fattahi H, Ueffing M, Gu X et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm. Opt Lett 37, 4973–4975 (2012). doi: 10.1364/OL.37.004973 |
[127] | Marcinkevičiūtė A, Michailovas K, Butkus R. Generation and parametric amplification of broadband chirped pulses in the near-infrared. Opt Commun 415, 70–73 (2018). doi: 10.1016/j.optcom.2018.01.029 |
[128] | Feng TL, Heilmann A, Bock M, Ehrentraut L, Witting T et al. 27 W 2.1 μm OPCPA system for coherent soft X-ray generation operating at 10 kHz. Opt Express 28, 8724–8733 (2020). doi: 10.1364/OE.386588 |
[129] | Schmidt BE, Thiré N, Boivin M, Laramée A, Poitras F et al. Frequency domain optical parametric amplification. Nat Commun 5, 3643 (2014). doi: 10.1038/ncomms4643 |
[130] | Zhang QB, Takahashi EJ, Mücke OD, Lu PX, Midorikawa K. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt Express 19, 7190–7212 (2011). doi: 10.1364/OE.19.007190 |
[131] | Fu YX, Takahashi EJ, Midorikawa K. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Opt Lett 40, 5082–5085 (2015). doi: 10.1364/OL.40.005082 |
[132] | Xu L, Nishimura K, Suda A, Midorikawa K, Fu YX et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification. Opt Express 28, 15138–15147 (2020). doi: 10.1364/OE.392045 |
[133] | Fu YX, Xue B, Midorikawa K, Takahashi EJ. TW-scale mid-infrared pulses near 3.3 µm directly generated by dual-chirped optical parametric amplification. Appl Phys Lett 112, 241105 (2018). doi: 10.1063/1.5038414 |
[134] | Neuhaus M, Fuest H, Seeger M, Schötz J, Trubetskov M et al. 10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate. Opt Express 26, 16074–16085 (2018). doi: 10.1364/OE.26.016074 |
[135] | Pupeikis J, Chevreuil PA, Bigler N, Gallmann L, Phillips CR et al. Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz. Optica 7, 168–171 (2020). doi: 10.1364/OPTICA.379846 |
[136] | Bigler N, Pupeikis J, Hrisafov S, Gallmann L, Phillips CR et al. Decoupling phase-matching bandwidth and interaction geometry using non-collinear quasi-phase-matching gratings. Opt Express 26, 6036–6045 (2018). doi: 10.1364/OE.26.006036 |
[137] | Bigler N, Pupeikis J, Hrisafov S, Gallmann L, Phillips CR et al. High-power OPCPA generating 1.7 cycle pulses at 2.5 µm. Opt Express 26, 26750–26757 (2018). doi: 10.1364/OE.26.026750 |
[138] | Shamir Y, Rothhardt J, Hädrich S, Demmler S, Tschernajew M et al. High-average-power 2 µm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate. Opt Lett 40, 5546–5549 (2015). doi: 10.1364/OL.40.005546 |
[139] | Rudd JV, Law RJ, Luk TS, Cameron SM. High-power optical parametric chirped-pulse amplifier system with a 1.55 µm signal and a 1.064 µm pump. Opt Lett 30, 1974–1976 (2005). doi: 10.1364/OL.30.001974 |
[140] | Kraemer D, Cowan ML, Hua RZ, Franjic K, Miller RJD. High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification. J Opt Soc Am B 24, 813–818 (2007). doi: 10.1364/JOSAB.24.000813 |
[141] | Rotermund F, Yoon CJ, Petrov V, Noack F, Kurimura S et al. Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz. Opt Express 12, 6421–6427 (2004). doi: 10.1364/OPEX.12.006421 |
[142] | Rotermund F, Yoon CJ, Kim K, Lim K, Kurimura S et al. Optical parametric chirped pulse amplification of Cr: forsterite laser pulses in periodically poled stoichiometric LiTaO3 at 1 kHz. Appl Phys B 85, 17–20 (2006). doi: 10.1007/s00340-006-2379-7 |
[143] | Cho WB, Kim K, Lim H, Lee J, Kurimura S et al. Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm. Opt Lett 32, 2828–2830 (2007). doi: 10.1364/OL.32.002828 |
[144] | de Faria Pinto T, Mathijssen J, Eikema KSE, Witte S. Optical parametric chirped pulse amplifier producing ultrashort 10.5 mJ pulses at 1.55 µm. Opt Express 27, 29829–29837 (2019). doi: 10.1364/OE.27.029829 |
[145] | Mücke OD, Sidorov D, Dombi P, Pugžlys A, Baltuška A et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 µm. Opt Lett 34, 118–120 (2009). doi: 10.1364/OL.34.000118 |
[146] | Mücke OD, Sidorov D, Dombi P, Pugžlys A, Ališauskas S et al. 10-mJ optically synchronized CEP-stable chirped parametric amplifier at 1.5 µm. Opt Spectrosc 108, 456–462 (2010). doi: 10.1134/S0030400X10030215 |
[147] | Mücke OD, Ališauskas S, Verhoef AJ, Pugžlys A, Baltuška A et al. Self-compression of millijoule 1.5 µm pulses. Opt Lett 34, 2498–2500 (2009). doi: 10.1364/OL.34.002498 |
[148] | Tsai CL, Tseng YH, Liang AY, Lin MW, Yang SD et al. Nonlinear compression of intense optical pulses at 1.55 µm by multiple plate continuum generation. J Lightwave Technol 37, 5100–5107 (2019). doi: 10.1109/JLT.2019.2929287 |
[149] | Rigaud P, Van de Walle A, Hanna M, Forget N, Guichard F et al. Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Opt Express 24, 26494–26502 (2016). doi: 10.1364/OE.24.026494 |
[150] | Jargot G, Daher N, Lavenu L, Delen X, Forget N et al. Self-compression in a multipass cell. Opt Lett 43, 5643–5646 (2018). doi: 10.1364/OL.43.005643 |
[151] | Mero M, Heiner Z, Petrov V, Rottke H, Branchi F et al. 43 W, 1.55 µm and 12.5 W, 3.1 µm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier. Opt Lett 43, 5246–5249 (2018). doi: 10.1364/OL.43.005246 |
[152] | Windeler MKR, Mecseki K, Miahnahri A, Robinson JS, Fraser JM et al. 100 W high-repetition-rate near-infrared optical parametric chirped pulse amplifier. Opt Lett 44, 4287–4290 (2019). doi: 10.1364/OL.44.004287 |
[153] | Erny C, Gallmann L, Keller U. High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared. Appl Phys B 96, 257–269 (2009). doi: 10.1007/s00340-009-3425-z |
[154] | Erny C, Heese C, Haag M, Gallmann L, Keller U. High-repetition-rate optical parametric chirped-pulse amplifier producing 1-µJ, sub-100-fs pulses in the mid-infrared. Opt Express 17, 1340–1345 (2009). doi: 10.1364/OE.17.001340 |
[155] | Chalus O, Bates PK, Smolarski M, Biegert J. Mid-IR short-pulse OPCPA with micro-joule energy at 100 kHz. Opt Express 17, 3587–3594 (2009). doi: 10.1364/OE.17.003587 |
[156] | Heese C, Phillips CR, Gallmann L, Fejer MM, Keller U. Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg: LiNbO3. Opt Lett 35, 2340–2342 (2010). doi: 10.1364/OL.35.002340 |
[157] | Heese C, Phillips CR, Mayer BW, Gallmann L, Fejer MM et al. 75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA. Opt Express 20, 26888–26894 (2012). doi: 10.1364/OE.20.026888 |
[158] | Mayer BW, Phillips CR, Gallmann L, Fejer MM, Keller U. Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 µm. Opt Lett 38, 4265–4268 (2013). doi: 10.1364/OL.38.004265 |
[159] | Phillips CR, Mayer BW, Gallmann L, Fejer MM, Keller U. Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings. Opt Express 22, 9627–9658 (2014). doi: 10.1364/OE.22.009627 |
[160] | Mayer BW, Phillips CR, Gallmann L, Keller U. Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA. Opt Express 22, 20798–20808 (2014). doi: 10.1364/OE.22.020798 |
[161] | Chalus O, Thai A, Bates PK, Biegert J. Six-cycle mid-infrared source with 3.8 µJ at 100 kHz. Opt Lett 35, 3204–3206 (2010). doi: 10.1364/OL.35.003204 |
[162] | Thai A, Hemmer M, Bates PK, Chalus O, Biegert J. Sub-250-mrad, passively carrier-envelope-phase- stable mid-infrared OPCPA source at high repetition rate. Opt Lett 36, 3918–3920 (2011). doi: 10.1364/OL.36.003918 |
[163] | Hemmer M, Thai A, Baudisch M, Ishizuki H, Taira T et al. 18-µJ energy, 160-kHz repetition rate, 250-MW peak power mid-IR OPCPA. Chin Opt Lett 11, 013202 (2013). doi: 10.3788/COL201311.013202 |
[164] | Baudisch M, Pires H, Ishizuki H, Taira T, Hemmer M, Biegert J. Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz. J Opt 17, 094002 (2015). doi: 10.1088/2040-8978/17/9/094002 |
[165] | Baudisch M, Wolter B, Pullen M, Hemmer M, Biegert J. High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs. Opt Lett 41, 3583–3586 (2016). doi: 10.1364/OL.41.003583 |
[166] | Elu U, Baudisch M, Pires H, Tani F, Frosz MH et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017). doi: 10.1364/OPTICA.4.001024 |
[167] | Thiré N, Maksimenka R, Kiss B, Ferchaud C, Bizouard P et al. 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Opt Express 25, 1505–1514 (2017). doi: 10.1364/OE.25.001505 |
[168] | Thiré N, Maksimenka R, Kiss B, Ferchaud C, Gitzinger G et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics. Opt Express 26, 26907–26915 (2018). doi: 10.1364/OE.26.026907 |
[169] | Kurucz M, Flender R, Haizer L, Nagymihaly RS, Cho W et al. 2.3-cycle mid-infrared pulses from hybrid thin-plate post-compression at 7 W average power. Opt Commun 472, 126035 (2020). doi: 10.1016/j.optcom.2020.126035 |
[170] | Flender R, Kurucz M, Grosz T, Borzsonyi A, Gimzevskis U et al. Dispersive mirror characterization and application for mid-infrared post-compression. J Opt 23, 065501 (2021). doi: 10.1088/2040-8986/abf88e |
[171] | Zou X, Li WK, Liang HK, Liu K, Qu SZ et al. 300 μJ, 3 W, few-cycle, 3 µm OPCPA based on periodically poled stoichiometric lithium tantalate crystals. Opt Lett 44, 2791–2794 (2019). doi: 10.1364/OL.44.002791 |
[172] | Zou X, Li WK, Qu SZ, Liu K, Li H et al. Flat-top pumped multi-millijoule mid-infrared parametric chirped-pulse amplifier at 10 kHz repetition rate. Laser Photon Rev 15, 2000292 (2021). doi: 10.1002/lpor.202000292 |
[173] | Bridger M, Naranjo-Montoya OA, Tarasevitch A, Bovensiepen U. Towards high power broad-band OPCPA at 3000 nm. Opt Express 27, 31330–31337 (2019). doi: 10.1364/OE.27.031330 |
[174] | Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt Lett 36, 2755–2757 (2011). doi: 10.1364/OL.36.002755 |
[175] | Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Pugžlys A, Stepanov EA et al. Mid-infrared laser filaments in the atmosphere. Sci Rep 5, 8368 (2015). doi: 10.1038/srep08368 |
[176] | Shumakova V, Malevich P, Ališauskas S, Voronin A, Zheltikov AM et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat Commun 7, 12877 (2016). doi: 10.1038/ncomms12877 |
[177] | Zhao K, Zhong HZ, Yuan P, Xie GQ, Wang J et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt Lett 38, 2159–2161 (2013). doi: 10.1364/OL.38.002159 |
[178] | Wang PF, Li YY, Li WK, Su HP, Shao BJ et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 µm laser based on OPCPA and hollow-core fiber compression. Opt Lett 43, 2197–2200 (2018). doi: 10.1364/OL.43.002197 |
[179] | von Grafenstein L, Bock M, Ueberschaer D, Zawilski K, Schunemann P et al. 5 µm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt Lett 42, 3796–3799 (2017). doi: 10.1364/OL.42.003796 |
[180] | Bock M, von Grafenstein L, Griebner U, Elsaesser T. Generation of millijoule few-cycle pulses at 5 µm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier. J Opt Soc Am B 35, C18–C24 (2018). doi: 10.1364/JOSAB.35.000C18 |
[181] | von Grafenstein L, Bock M, Ueberschaer D, Escoto E, Koç A et al. Multi-millijoule, few-cycle 5 µm OPCPA at 1 kHz repetition rate. Opt Lett 45, 5998–6001 (2020). doi: 10.1364/OL.402562 |
[182] | Fuertjes P, von Grafenstein L, Ueberschaer D, Mei C, Griebner U et al. Compact OPCPA system seeded by a Cr: ZnS laser for generating tunable femtosecond pulses in the MWIR. Opt Lett 46, 1704–1707 (2021). doi: 10.1364/OL.419956 |
[183] | Fuertjes P, von Grafenstein L, Mei C, Bock M, Griebner U et al. Cr: ZnS-based soliton self-frequency shifted signal generation for a tunable sub-100 fs MWIR OPCPA. Opt Express 30, 5142–5150 (2022). doi: 10.1364/OE.450210 |
[184] | Sanchez D, Hemmer M, Baudisch M, Cousin SL, Zawilski K et al. 7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 µm. Optica 3, 147–150 (2016). doi: 10.1364/OPTICA.3.000147 |
[185] | Elu U, Steinle T, Sánchez D, Maidment L, Zawilski K et al. Table-top high-energy 7 µm OPCPA and 260 mJ Ho: YLF pump laser. Opt Lett 44, 3194–3197 (2019). doi: 10.1364/OL.44.003194 |
[186] | Voronin AA, Lanin AA, Zheltikov AM. Modeling high-peak-power few-cycle field waveform generation by optical parametric amplification in the long-wavelength infrared. Opt Express 24, 23207–23220 (2016). doi: 10.1364/OE.24.023207 |
[187] | Yin YC, Chew A, Ren XM, Li J, Wang Y et al. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Sci Rep 7, 45794 (2017). doi: 10.1038/srep45794 |
[188] | Qu SZ, Liang HK, Liu K, Zou X, Li WK et al. 9 µm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt Lett 44, 2422–2425 (2019). doi: 10.1364/OL.44.002422 |
[189] | Novák O, Krogen PR, Kroh T, Mocek T, Kärtner FX et al. Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses. Opt Lett 43, 1335–1338 (2018). doi: 10.1364/OL.43.001335 |
[190] | Liu K, Liang HK, Li WK, Zou X, Qu SZ et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG driven by 3-µm OPCPA. IEEE Photonics Technol Lett 31, 1741–1744 (2019). doi: 10.1109/LPT.2019.2944256 |
[191] | Wnuk P, Stepanenko Y, Radzewicz C. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier. Opt Express 18, 7911–7916 (2010). doi: 10.1364/OE.18.007911 |
[192] | Darginavicčius J, Tamošauskas G, Piskarskas A, Dubietis A. Generation of 30-fs ultraviolet pulses by four-wave optical parametric chirped pulse amplification. Opt Express 18, 16096–16101 (2010). doi: 10.1364/OE.18.016096 |
[193] | Mero M, Sipos A, Kurdi G, Osvay K. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme. Opt Express 19, 9646–9655 (2011). doi: 10.1364/OE.19.009646 |
[194] | Pelletier E, Sell A, Leitenstorfer A, Miller RJD. Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 µm. Opt Express 20, 27456–27464 (2012). doi: 10.1364/OE.20.027456 |
[195] | Valiulis G, Dubietis A, Piskarskas A. Optical parametric amplification of chirped X pulses. Phys Rev A 77, 043824 (2008). doi: 10.1103/PhysRevA.77.043824 |
[196] | Qian JY, Peng YJ, Li YY, Wang PF, Shao BJ et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Res 8, 421–425 (2020). doi: 10.1364/PRJ.385190 |
[197] | Hanna M, Druon F, Georges P. Fiber optical parametric chirped-pulse amplification in the femtosecond regime. Opt Express 14, 2783–2790 (2006). doi: 10.1364/OE.14.002783 |
[198] | Bigourd D, Lago L, Mussot A, Kudlinski A, Gleyze JF et al. High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 µm. Opt Lett 35, 3480–3482 (2010). doi: 10.1364/OL.35.003480 |
[199] | Caucheteur C, Bigourd D, Hugonnot E, Szriftgiser P, Kudlinski A et al. Experimental demonstration of optical parametric chirped pulse amplification in optical fiber. Opt Lett 35, 1786–1788 (2010). doi: 10.1364/OL.35.001786 |
[200] | Zhou Y, Li Q, Cheung KKY, Yang SG, Chui PC et al. All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes. IEEE Photonics Technol Lett 22, 1330–1332 (2010). doi: 10.1109/LPT.2010.2055557 |
[201] | Cristofori V, Lali-Dastjerdi Z, Rishøj LS, Galili M, Peucheret C et al. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers. Opt Express 21, 26044–26051 (2013). doi: 10.1364/OE.21.026044 |
[202] | Mussot A, Kudlinski A, d’Augères PB, Hugonnot E. Amplification of ultra-short optical pulses in a two-pump fiber optical parametric chirped pulse amplifier. Opt Express 21, 12197–12203 (2013). doi: 10.1364/OE.21.012197 |
[203] | Bigourd D, d’Augères PB, Dubertrand J, Hugonnot E, Mussot A. Ultra-broadband fiber optical parametric amplifier pumped by chirped pulses. Opt Lett 39, 3782–3785 (2014). doi: 10.1364/OL.39.003782 |
[204] | Vanvincq O, Fourcade-Dutin C, Mussot A, Hugonnot E, Bigourd D. Ultrabroadband fiber optical parametric amplifiers pumped by chirped pulses. Part 1: analytical model. J Opt Soc Am B 32, 1479–1487 (2015). doi: 10.1364/JOSAB.32.001479 |
[205] | Fourcade-Dutin C, Vanvincq O, Mussot A, Hugonnot E, Bigourd D. Ultrabroadband fiber optical parametric amplifier pumped by chirped pulses. Part 2: sub-30-fs pulse amplification at high gain. J Opt Soc Am B 32, 1488–1493 (2015). doi: 10.1364/JOSAB.32.001488 |
[206] | Fu W, Wise FW. Normal-dispersion fiber optical parametric chirped-pulse amplification. Opt Lett 43, 5331–5334 (2018). doi: 10.1364/OL.43.005331 |
[207] | Fu W, Herda R, Wise FW. Design guidelines for normal-dispersion fiber optical parametric chirped-pulse amplifiers. J Opt Soc Am B 37, 1790–1805 (2020). doi: 10.1364/JOSAB.389445 |
[208] | Morin P, Dubertrand J, d’Augères PB, Quiquempois Y, Bouwmans G et al. µJ-level Raman-assisted fiber optical parametric chirped-pulse amplification. Opt Lett 43, 4683–4686 (2018). doi: 10.1364/OL.43.004683 |
[209] | Buttolph ML, Sidorenko P, Schaffer CB, Wise FW. Femtosecond optical parametric chirped-pulse amplification in birefringent step-index fiber. Opt Lett 47, 545–548 (2022). doi: 10.1364/OL.447506 |
[210] | Qin YK, Ou YH, Cromey B, Batjargal O, Barton JK et al. Watt-level all-fiber optical parametric chirped-pulse amplifier working at 1300 nm. Opt Lett 44, 3422–3425 (2019). doi: 10.1364/OL.44.003422 |
[211] | Qin YK, Batjargal O, Cromey B, Kieu K. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification. Opt Express 28, 2317–2325 (2020). doi: 10.1364/OE.384185 |
[212] | Mori Y, Kitagawa Y. Double-line terawatt OPCPA laser system for exciting beat wave oscillations. Appl Phys B 110, 57–64 (2013). doi: 10.1007/s00340-012-5251-y |
[213] | Hong KH, Lai CJ, Gkortsas VM, Huang SW, Moses J et al. High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1-µm source: high-order harmonic spectroscopy under macroscopic effects. Phys Rev A 86, 043412 (2012). doi: 10.1103/PhysRevA.86.043412 |
[214] | Rothhardt J, Krebs M, Hädrich S, Demmler S, Limpert J et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J Phys 16, 033022 (2014). doi: 10.1088/1367-2630/16/3/033022 |
[215] | Geiseler H, Ishii N, Kaneshima K, Kitano K, Kanai T et al. High-energy half-cycle cutoffs in high harmonic and rescattered electron spectra using waveform-controlled few-cycle infrared pulses. J Phys B At Mol Opt Phys 47, 204011 (2014). doi: 10.1088/0953-4075/47/20/204011 |
[216] | Lai CJ, Hong KH, Siqueira JP, Krogen P, Chang CL et al. Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft x-ray generation. J Opt 17, 094009 (2015). doi: 10.1088/2040-8978/17/9/094009 |
[217] | Rudawski P, Harth A, Guo C, Lorek E, Miranda M et al. Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system. Eur Phys J D 69, 70 (2015). doi: 10.1140/epjd/e2015-50568-y |
[218] | Chevreuil PA, Brunner F, Hrisafov S, Pupeikis J, Phillips CR et al. Water-window high harmonic generation with 0.8-µm and 2.2-µm OPCPAs at 100 kHz. Opt Express 29, 32996–33008 (2021). doi: 10.1364/OE.440273 |
[219] | Krebs M, Hädrich S, Demmler S, Rothhardt J, Zaïr A et al. Towards isolated attosecond pulses at megahertz repetition rates. Nat Photonics 7, 555–559 (2013). doi: 10.1038/nphoton.2013.131 |
[220] | Ren XM, Li J, Yin YC, Zhao K, Chew A et al. Attosecond light sources in the water window. J Opt 20, 023001 (2018). doi: 10.1088/2040-8986/aaa394 |
[221] | Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate. Optica 9, 145–151 (2022). doi: 10.1364/OPTICA.443521 |
[222] | Osolodkov M, Furch FJ, Schell F, Šušnjar P, Cavalcante F et al. Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate. J Phys B At Mol Opt Phys 53, 194003 (2020). doi: 10.1088/1361-6455/aba77d |
[223] | Popmintchev T, Chen MC, Popmintchev D, Arpin P, Brown S et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012). doi: 10.1126/science.1218497 |
[224] | Stein GJ, Keathley PD, Krogen P, Liang HK, Siqueira JP et al. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source. J Phys B At Mol Opt Phys 49, 155601 (2016). doi: 10.1088/0953-4075/49/15/155601 |
[225] | Ishii N, Kaneshima K, Kanai T, Watanabe S, Itatani J. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics. J Opt 20 014003 (2018). |
[226] | Popmintchev D, Galloway BR, Chen MC, Dollar F, Mancuso CA et al. Near- and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys Rev Lett 120, 093002 (2018). doi: 10.1103/PhysRevLett.120.093002 |
[227] | Hoff D, Furch FJ, Witting T, Rühle K, Adolph D et al. Continuous every-single-shot carrier-envelope phase measurement and control at 100 kHz. Opt Lett 43, 3850–3853 (2018). doi: 10.1364/OL.43.003850 |
[228] | Mitrofanov AV, Sidorov-Biryukov DA, Rozhko MV, Ryabchuk SV, Voronin AA el al. High-order harmonic generation from a solid-surface plasma by relativistic-intensity sub-100-fs mid-infrared pulses. Opt Lett 43, 5571–5574 (2018). doi: 10.1364/OL.43.005571 |
[229] | Weisshaupt J, Juvé V, Holtz M, Ku S, Woerner M et al. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat Photonics 8, 927–930 (2014). doi: 10.1038/nphoton.2014.256 |
[230] | Puppin M, Deng Y, Nicholson CW, Feldl J, Schröter NBM et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev Sci Instrum 90, 023104 (2019). doi: 10.1063/1.5081938 |
[231] | Wolter B, Pullen MG, Baudisch M, Sclafani M, Hemmer M et al. Strong-field physics with mid-IR fields. Phys Rev X 5, 021034 (2015). |
[232] | Amini K, Sclafani M, Steinle T, Le AT, Sanchez A et al. Imaging the Renner-Teller effect using laser-induced electron diffraction. Proc Natl Acad Sci USA 116, 8173–8177 (2019). doi: 10.1073/pnas.1817465116 |
[233] | Woodbury D, Feder L, Shumakova V, Gollner C, Schwartz R et al. Laser wakefield acceleration with mid-IR laser pulses. Opt Lett 43, 1131–1134 (2018). doi: 10.1364/OL.43.001131 |
[234] | Samsonova Z, Höfer S, Kaymak V, Ališauskas S, Shumakova V et al. Relativistic interaction of long-wavelength ultrashort laser pulses with nanowires. Phys Rev X 9, 021029 (2019). |
[235] | Manzoni C, Mücke OD, Cirmi G, Fang SB, Moses J et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photon Rev 9, 129–171 (2015). doi: 10.1002/lpor.201400181 |
[236] | Huang SW, Cirmi G, Moses J, Hong KH, Bhardwaj S et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat Photonics 5, 475–479 (2011). doi: 10.1038/nphoton.2011.140 |
[237] | Çankaya H, Calendron AL, Zhou C, Chia SH, Mücke OD et al. 40-µJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers. Opt Express 24, 25169–25180 (2016). doi: 10.1364/OE.24.025169 |
[238] | Muschet AA, De Andres A, Fischer P, Salh R, Veisz L. Utilizing the temporal superresolution approach in an optical parametric synthesizer to generate multi-TW sub-4-fs light pulses. Opt Express 30, 4374–4380 (2022). doi: 10.1364/OE.447846 |
[239] | Huang SW, Cirmi G, Moses J, Hong KH, Bhardwaj S et al. Optical waveform synthesizer and its application to high-harmonic generation. J Phys B At Mol Opt Phys 45, 074009 (2012). doi: 10.1088/0953-4075/45/7/074009 |
[240] | Biegert J, Bates PK, Chalus O. New mid-infrared light sources. IEEE J Sel Top Quantum Electron 18, 531–540 (2012). doi: 10.1109/JSTQE.2011.2135842 |
[241] | Luther BM, Tracy KM, Gerrity M, Brown S, Krummel AT. 2D IR spectroscopy at 100 kHz utilizing a mid-IR OPCPA laser source. Opt Express 24, 4117–4127 (2016). doi: 10.1364/OE.24.004117 |
[242] | Suchowski H, Krogen PR, Huang SW, Kärtner FX, Moses J. Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion. Opt Express 21, 28892–28901 (2013). doi: 10.1364/OE.21.028892 |
[243] | Krogen P, Suchowski H, Liang HK, Flemens N, Hong KH et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat Photonics 11, 222–226 (2017). doi: 10.1038/nphoton.2017.34 |
[244] | Kartashov D, Ališauskas S, Pugžlys A, Voronin A, Zheltikov A et al. White light generation over three octaves by femtosecond filament at 3.9 µm in argon. Opt Lett 37, 3456–3458 (2012). doi: 10.1364/OL.37.003456 |
[245] | Mitrofanov AV, Voronin AA, Mitryukovskiy SI, Sidorov-Biryukov DA, Pugžlys A et al. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics. Opt Lett 40, 2068–2071 (2015). doi: 10.1364/OL.40.002068 |
[246] | Kartashov D, Ališauskas S, Pugžlys A, Voronin A, Zheltikov A et al. Mid-infrared laser filamentation in molecular gases. Opt Lett 38, 3194–3197 (2013). doi: 10.1364/OL.38.003194 |
[247] | Kartashov D, Ališauskas S, Pugzdžlys A, Voronin AA, Zheltikov AM et al. Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity. Opt Lett 37, 2268–2270 (2012). doi: 10.1364/OL.37.002268 |
[248] | Kartashov D, Ališauskas S, Andriukaitis G, Pugžlys A, Shneider M et al. Free-space nitrogen gas laser driven by a femtosecond filament. Phys Rev A 86, 033831 (2012). doi: 10.1103/PhysRevA.86.033831 |
[249] | Malevich PN, Maurer R, Kartashov D, Ališauskas S, Lanin AA et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Opt Lett 40, 2469–2472 (2015). doi: 10.1364/OL.40.002469 |
[250] | Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Mitryukovsky SI, Fedotov AB et al. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica 3, 299–302 (2016). doi: 10.1364/OPTICA.3.000299 |
[251] | Mitrofanov AV, Voronin AA, Rozhko MV, Sidorov-Biryukov DA, Fedotov AB et al. Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air. Optica 4, 1405–1408 (2017). doi: 10.1364/OPTICA.4.001405 |
[252] | Voronin AA, Mitrofanov AV, Sidorov-Biryukov DA, Fedotov AB, Pugžlys A et al. Free-beam soliton self-compression in air. J Opt 20, 025504 (2018). doi: 10.1088/2040-8986/aa9bcc |
[253] | Shumakova V, Ališauskas S, Malevich P, Voronin AA, Mitrofanov AV et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR. Opt Lett 44, 2173–2176 (2019). doi: 10.1364/OL.44.002173 |
[254] | Mitrofanov AV, Voronin AA, Sidorov-Biryukov DA, Rozhko MV, Stepanov EA et al. Mapping anomalous dispersion of air with ultrashort mid-infrared pulses. Sci Rep 7, 2103 (2017). doi: 10.1038/s41598-017-01598-3 |
[255] | Silva F, Austin DR, Thai A, Baudisch M, Hemmer M et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat Commun 3, 807 (2012). doi: 10.1038/ncomms1816 |
[256] | Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J. Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics. Opt Express 21, 28095–28102 (2013). doi: 10.1364/OE.21.028095 |
[257] | Liang HK, Krogen P, Grynko R, Novak O, Chang CL et al. Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics. Opt Lett 40, 1069–1072 (2015). doi: 10.1364/OL.40.001069 |
[258] | Hudson DD, Baudisch M, Werdehausen D, Eggleton BJ, Biegert J. 1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA. Opt Lett 39, 5752–5755 (2014). doi: 10.1364/OL.39.005752 |
[259] | Zheltikov A. Multioctave supercontinua and subcycle lightwave electronics [Invited]. J Opt Soc Am B 36, A168–A181 (2019). doi: 10.1364/JOSAB.36.00A168 |
[260] | Elu U, Maidment L, Vamos L, Tani F, Novoa D et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat Photonics 15, 277–280 (2021). doi: 10.1038/s41566-020-00735-1 |
[261] | Mitrofanov AV, Sidorov-Biryukov DA, Nazarov MM, Voronin AA, Rozhko MV et al. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 7, 15–19 (2020). doi: 10.1364/OPTICA.7.000015 |
[262] | Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun 11, 292 (2020). doi: 10.1038/s41467-019-14206-x |
[263] | Gollner C, Shalaby M, Brodeur C, Astrauskas I, Jutas R et al. Highly efficient THz generation by optical rectification of mid-IR pulses in DAST. APL Photonics 6, 046105 (2021). doi: 10.1063/5.0037235 |
[264] | Jovanovic I, Brown C, Wattellier B, Nielsen N, Molander W et al. Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification. Rev Sci Instrum 75, 5193–5202 (2004). doi: 10.1063/1.1819382 |
[265] | Clady R, Coustillier G, Gastaud M, Sentis M, Spiga P et al. Architecture of a blue high contrast multiterawatt ultrashort laser. Appl Phys B 82, 347–358 (2006). doi: 10.1007/s00340-005-2081-1 |
The first OPCPA. (a) Experimental setup. (b) Amplified spectrum. (c) Autocorrelation function of compressed pulse. Image at the bottom shows one of the authors (AD) aligning picosecond Nd:glass laser, which was used for driving the OPCPA experiment. Figure reproduced with permission from: (a–c) ref.3, Elsevier.
State of the art of few optical cycle table-top OPCPA systems. The central wavelength is indicated by colored circles, where color coding denotes the nonlinear crystal used as an amplifying medium. The amplified bandwidths are schematically depicted by horizontal bars, which represent the full width of the amplified spectrum. The time bar on the top marks the year of experimental inception of OPCPA in the particular wavelength region.
(a) Layout of multi-terawatt high average power NIR OPCPA system with complex Yb:KGW laser-based front-end, which includes supercontinuum generation, DFG and complimentary noncollinear OPA. (b) Compressed pulse envelope measured with a self-referenced spectral interferometry (SRSI) and theoretical transform-limited pulse envelope (TL). (c) Comparison of seed and amplified pulse spectra. Photo at the bottom: laboratory view of a running system. Image courtesy dr. A. Varanavičius, Laser Research Center, Vilnius University. Figure reproduced with permission from: (a–c) ref.88, The Optical Society.
Graphical summary of the performance of multi-millijoule >100-GW and TW-class table-top OPCPA systems in the NIR (yellow area), SWIR (blue area) and MIR (magenta area). Color coding of the data points denotes the gain medium of pump laser, which is indicated in the legend.
Graphical summary of the performance of high average power NIR OPCPA systems. Color coding of data points denotes the gain medium of pump laser, while different shapes indicate the configuration of laser amplifier.
Graphical summary of the performance of high average power SWIR OPCPA systems. Color coding of data points denotes the gain medium of pump laser, while different shapes indicate the configuration of laser amplifier.
Graphical summary of the performance of high average power MIR OPCPA systems. Color coding of data points denotes the gain medium of pump laser, while different shapes indicate the configuration of laser amplifier.
Layout of the 3.9 μm OPCPA system. Photo at the bottom: image of the back-end of the system. Image courtesy dr. A. Pugžlys, Photonics Institute, Technical University Wien. Figure reproduced with permission from ref.175, under a Creative Commons Attribution 4.0 International License.
(a) Setup of the MIR OPCPA that comprises the front-end including femtosecond Cr:ZnS master oscillator and fluoride fiber (ZBLAN), Ho:YLF regenerative amplifier as pump and two optical parametric amplification stages based on ZGP crystals. (b) Spectral intensities of the signal (left) and the corresponding idler pulses (right). Autocorrelation functions (ACF) of (c) uncompressed signal at 2.99 μm and (d) re-compressed idler pulses at 5.4 μm. Figure reproduced with permission from ref.182, The Optical Society.
(a) Schematic illustration of the coherent kilo-electronvolt X-ray supercontinua emitted when a MIR laser pulse is focused into a high-pressure He gas-filled waveguide, where phase-matched harmonic signal grows quadratically with pressure. (b) Experimental HHG spectra emitted under full phase-matching conditions as a function of driving wavelength (yellow: 0.8 μm; green: 1.3 μm; blue: 2 μm; purple: 3.9 μm). Inset: Fourier transform-limited pulse duration of 2.5 as. Figure reproduced with permission from ref.223, AAAS.
(a) Spectrum of the millimeter-wave-to-ultraviolet supercontinuum. (b) Electro-optic sampling and (c) autocorrelation traces of the waveforms of the THz-millimeter-wave field. (d) The millimeter-wave-to-THz part of the supercontinuum spectrum. Figure reproduced with permission from ref.261, The Optical Society.