Zhao H, Wang XK, Liu ST, Zhang Y. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012
Citation: Zhao H, Wang XK, Liu ST, Zhang Y. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012

Article Open Access

Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band

More Information
  • Polarization is a basic characteristic of electromagnetic waves that conveys much optical information owing to its many states. The polarization state is manipulated and controlled for optical information security, optical encryption, and optical communication. Metasurface devices provide a new way to manipulate wave-fronts of light. A single ultrathin metasurface device can generate and modulate several differently polarized light fields, and thus carries optical information in several different channels. Terahertz (THz) waves have become widely used as carrier waves for wireless communication. Compact and functional metasurface devices are in high demand for THz elements and systems. This paper proposes a tri-layer metallic THz metasurface for multi-channel polarization generation and phase modulation with a high efficiency of approximately 80%. An azimuthally polarized THz vectorial beam generator is realized and characterized for use as a THz polarization analyzer. The incident polarization angle can be observed graphically with high accuracy. Moreover, a vectorial hologram with eight channels for different linear polarization states is demonstrated experimentally. The information in different holograms can be hidden by choosing the polarization channel for detection. This work contributes to achieving multi-functional metasurface in the THz band and can benefit THz communication and optical information security.
  • 加载中
  • [1] Zhang XC, Xu JZ. Introduction to THz Wave Photonics (Springer, New York, 2010).

    Google Scholar

    [2] Kawase K, Ogawa Y, Watanabe Y, Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11, 2549–2554 (2003). doi: 10.1364/OE.11.002549

    CrossRef Google Scholar

    [3] Qin JY, Ying YB, Xie LJ. The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev 48, 439–457 (2013). doi: 10.1080/05704928.2012.745418

    CrossRef Google Scholar

    [4] Zhang XC, Shkurinov A, Zhang Y. Extreme terahertz science. Nat Photonics 11, 16–18 (2017). doi: 10.1038/nphoton.2016.249

    CrossRef Google Scholar

    [5] Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett 20, 1716–1718 (1995). doi: 10.1364/OL.20.001716

    CrossRef Google Scholar

    [6] Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 151, 424–432 (2004). doi: 10.1111/j.1365-2133.2004.06129.x

    CrossRef Google Scholar

    [7] Wang JR, Lindley-Hatcher H, Chen XQ, Pickwell-MacPherson E. THz sensing of human skin: a review of skin modeling approaches. Sensors 21, 3624 (2021). doi: 10.3390/s21113624

    CrossRef Google Scholar

    [8] Lin C, Li GYL. Terahertz communications: an array-of-subarrays solution. IEEE Commun Mag 54, 124–131 (2016). doi: 10.1109/MCOM.2016.1600306CM

    CrossRef Google Scholar

    [9] Yang YH, Yamagami Y, Yu XB, Pitchappa P, Webber J et al. Terahertz topological photonics for on-chip communication. Nat Photonics 14, 446–451 (2020). doi: 10.1038/s41566-020-0618-9

    CrossRef Google Scholar

    [10] Fan KB, Suen JY, Liu XY, Padilla WJ. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601–604 (2017). doi: 10.1364/OPTICA.4.000601

    CrossRef Google Scholar

    [11] Liu XY, Fan KB, Shadrivov IV, Padilla WJ. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express 25, 191–201 (2017). doi: 10.1364/OE.25.000191

    CrossRef Google Scholar

    [12] Cheng QQ, Ma ML, Yu D, Shen ZX, Xie JY et al. Broadband achromatic metalens in terahertz regime. Sci Bull 64, 1525–1531 (2019). doi: 10.1016/j.scib.2019.08.004

    CrossRef Google Scholar

    [13] Hu D, Wang XK, Feng SF, Ye JS, Sun WF et al. Ultrathin terahertz planar elements. Adv Opt Mater 1, 186–191 (2013). doi: 10.1002/adom.201200044

    CrossRef Google Scholar

    [14] He JW, Ye JS, Wang XK, Kan Q, Zhang Y. A broadband terahertz ultrathin multi-focus lens. Sci Rep 6, 28800 (2016). doi: 10.1038/srep28800

    CrossRef Google Scholar

    [15] Wang DC, Gu YH, Gong YD, Qiu CW, Hong MH. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. Opt Express 23, 11114–11122 (2015). doi: 10.1364/OE.23.011114

    CrossRef Google Scholar

    [16] Wang DC, Zhang LC, Gu YH, Mehmood MQ, Gong YD et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep 5, 15020 (2015). doi: 10.1038/srep15020

    CrossRef Google Scholar

    [17] Ding F, Zhong SM, Bozhevolnyi SI. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater 6, 1701204 (2018). doi: 10.1002/adom.201701204

    CrossRef Google Scholar

    [18] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [19] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [20] He Q, Sun SL, Xiao SY, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415

    CrossRef Google Scholar

    [21] He JW, He XJ, Dong T, Wang S, Fu MX et al. Recent progress and applications of terahertz metamaterials. J Phys D Appl Phys 55, 123002 (2022). doi: 10.1088/1361-6463/ac3282

    CrossRef Google Scholar

    [22] Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 110, 197401 (2013). doi: 10.1103/PhysRevLett.110.197401

    CrossRef Google Scholar

    [23] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014). doi: 10.1038/lsa.2014.99

    CrossRef Google Scholar

    [24] Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM et al. Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett 14, 2491–2497 (2014). doi: 10.1021/nl5001746

    CrossRef Google Scholar

    [25] Yu NF, Aieta F, Genevet P, Kats MA, Gaburro Z et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12, 6328–6333 (2012). doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [26] Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett 13, 1086–1091 (2013). doi: 10.1021/nl304392b

    CrossRef Google Scholar

    [27] Karimi E, Schulz SA, De Leon I, Qassim H, Upham J et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 3, e167 (2014). doi: 10.1038/lsa.2014.48

    CrossRef Google Scholar

    [28] Mehmood MQ, Mei ST, Hussain S, Huang K, Siew SY et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 28, 2533–2539 (2016). doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [29] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016). doi: 10.1126/science.aaf3417

    CrossRef Google Scholar

    [30] Wen DD, Yue FY, Li GX, Zheng GX, Chan K et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 6, 8241 (2015). doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [31] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [32] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029

    CrossRef Google Scholar

    [33] Liu XB, Wang Q, Xu Q, Zhang XQ, Xu YH et al. Metasurface-based computer generated holography at terahertz frequencies. Opto-Electron Eng 47, 190674 (2020). doi: 10.12086/oee.2020.190674

    CrossRef Google Scholar

    [34] Qiu CW, Zhang T, Hu GW, Kivshar Y. Quo vadis, metasurfaces. Nano Lett 21, 5461–5474 (2021). doi: 10.1021/acs.nanolett.1c00828

    CrossRef Google Scholar

    [35] Guo H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [36] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [37] Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y

    CrossRef Google Scholar

    [38] Xu HX, Hu GW, Han L, Jiang MH, Huang YJ et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization. Adv Opt Mater 7, 1801479 (2019).

    Google Scholar

    [39] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [40] Yan C, Li X, Pu MB, Ma XL, Zhang F et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photonics 6, 628–633 (2019). doi: 10.1021/acsphotonics.8b01119

    CrossRef Google Scholar

    [41] Gao S, Park CS, Zhou CY, Lee SS, Choi DY. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv Opt Mater 7, 1900883 (2019). doi: 10.1002/adom.201900883

    CrossRef Google Scholar

    [42] Zang XF, Ding HZ, Intaravanne Y, Chen L, Peng Y et al. A multi-foci metalens with polarization-rotated focal points. Laser Photonics Rev 13, 1900182 (2019). doi: 10.1002/lpor.201900182

    CrossRef Google Scholar

    [43] Yan C, Li X, Pu MB, Ma XL, Zhang F et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl Phys Lett 114, 161904 (2019). doi: 10.1063/1.5091475

    CrossRef Google Scholar

    [44] Yue Z, Liu JY, Li JT, Li J, Zheng CL et al. Multifunctional terahertz metasurfaces for polarization transformation and wavefront manipulation. Nanoscale 13, 14490–14496 (2021). doi: 10.1039/D1NR03388C

    CrossRef Google Scholar

    [45] Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [46] Zang XF, Dong FL, Yue FY, Zhang CM, Xu LH et al. Polarization encoded color image embedded in a dielectric metasurface. Adv Mater 30, 1707499 (2018). doi: 10.1002/adma.201707499

    CrossRef Google Scholar

    [47] Zhao RZ, Sain B, Wei QS, Tang CC, Li XW et al. Multichannel vectorial holographic display and encryption. Light Sci Appl 7, 95 (2018). doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [48] Ding F, Chang BD, Wei QS, Huang LL, Guan XW et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev 14, 2000116 (2020). doi: 10.1002/lpor.202000116

    CrossRef Google Scholar

    [49] Song QH, Baroni A, Sawant R, Ni PN, Brandli V et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat Commun 11, 2651 (2020). doi: 10.1038/s41467-020-16437-9

    CrossRef Google Scholar

    [50] Rubin NA, Zaidi A, Dorrah AH, Shi ZJ, Capasso F. Jones matrix holography with metasurfaces. Sci Adv 7, eabg7488 (2021). doi: 10.1126/sciadv.abg7488

    CrossRef Google Scholar

    [51] Deng ZL, Deng JH, Zhuang X, Wang S, Shi T et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci Appl 7, 78 (2018). doi: 10.1038/s41377-018-0075-0

    CrossRef Google Scholar

    [52] Deng ZL, Tu QA, Wang YJ, Wang ZQ, Shi T et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater 33, 2103472 (2021). doi: 10.1002/adma.202103472

    CrossRef Google Scholar

    [53] Deng ZL, Deng JH, Zhuang X, Wang S, Li KF et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [54] Deng ZL, Jin MK, Ye X, Wang S, Shi T et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater 30, 1910610 (2020). doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [55] Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013). doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [56] Liu S, Noor A, Du LL, Zhang L, Xu Q et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3, 1968–1977 (2016). doi: 10.1021/acsphotonics.6b00515

    CrossRef Google Scholar

    [57] Wang XK, Zhang Y. Advancement and application of terahertz pulsed focal-plane imaging technique. Opto-Electron Eng 47, 190413 (2020). doi: 10.12086/oee.2020.190413

    CrossRef Google Scholar

    [58] Niziev VG, Nesterov AV. Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32, 1455–1461 (1999). doi: 10.1088/0022-3727/32/13/304

    CrossRef Google Scholar

  • Supplementary information for Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(7394) PDF downloads(985) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint