Citation: | Wang SL, Shan YD, Zheng DH, Liu SG, Bo F et al. The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility. Opto-Electron Adv 5, 210135 (2022). doi: 10.29026/oea.2022.210135 |
[1] | Park J, Lee KR, Park YK. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat Commun 10, 1034 (2019). doi: 10.1038/s41467-019-08618-y |
[2] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[3] | Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H et al. Projection-type see-through holographic three-dimensional display. Nat Commun 7, 12954 (2016). doi: 10.1038/ncomms12954 |
[4] | Matharu AS, Jeeva S, Ramanujam PS. Liquid crystals for holographic optical data storage. Chem Soc Rev 36, 1868–1880 (2007). doi: 10.1039/b706242g |
[5] | Zhang CL, Zhang DF, Bian ZP. Dynamic full-color digital holographic 3D display on single DMD. Opto-Electron Adv 4, 200049 (2021). doi: 10.29026/oea.2021.200049 |
[6] | Yu H, Lee KR, Park J, Park YK. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat Photonics 11, 186–192 (2017). doi: 10.1038/nphoton.2016.272 |
[7] | Tay S, Blanche PA, Voorakaranam R, Tunç AV, Lin W et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008). doi: 10.1038/nature06596 |
[8] | Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010). doi: 10.1038/nature09521 |
[9] | Li X, Li Y, Xiang Y, Rong N, Zhou PC et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Opt Express 24, 8824–8831 (2016). doi: 10.1364/OE.24.008824 |
[10] | Wan WQ, Qiao W, Huang WB, Zhu M, Ye Y et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD. Opt Express 25, 1114–1122 (2017). doi: 10.1364/OE.25.001114 |
[11] | Kozanecka-Szmigiel A, Rutkowska KA, Nieborek M, Kwasny M, Karpierz MA et al. Photopatterned azo poly (amide imide) layers as aligning substrates of holographic liquid crystal diffraction gratings for beam steering applications. J Mater Chem C 8, 968–976 (2020). doi: 10.1039/C9TC04296B |
[12] | Zhou PC, Li Y, Li X, Liu SX, Su YK. Holographic display and storage based on photo-responsive liquid crystals. Liq Cryst Rev 4, 83–100 (2016). doi: 10.1080/21680396.2016.1233079 |
[13] | Zhao H, Lian C, Huang F, Xue TY, Sun XD et al. Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells. Appl Phys Lett 101, 211118 (2012). doi: 10.1063/1.4767444 |
[14] | Jiang AQ, Geng WP, Lv P, Hong JW, Jiang J et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater 19, 1188–1194 (2020). doi: 10.1038/s41563-020-0702-z |
[15] | Kong YF, Bo F, Wang WW, Zheng DH, Liu HD et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv Mater 32, 1806452 (2020). doi: 10.1002/adma.201806452 |
[16] | Kösters M, Sturman B, Werheit P, Haertle D, Buse K. Optical cleaning of congruent lithium niobate crystals. Nat Photonics 3, 510–513 (2009). doi: 10.1038/nphoton.2009.142 |
[17] | Muñoz-Martínez JF, Alcázar Á, Carrascosa M. Time evolution of photovoltaic fields generated by arbitrary light patterns in z-cut LiNbO3: Fe: application to optoelectronic nanoparticle manipulation. Opt Express 28, 18085–18102 (2020). doi: 10.1364/OE.389153 |
[18] | Wang C, Li ZY, Kim MH, Xiong X, Ren XF et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6 |
[19] | Witmer JD, Valery JA, Arrangoiz-Arriola P, Sarabalis CJ, Hill JT et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep 7, 46313 (2017). doi: 10.1038/srep46313 |
[20] | Xiong PX, Peng MY. Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3: Nd3+ for stress sensors. J Mater Chem C 7, 6301–6307 (2019). doi: 10.1039/C9TC00242A |
[21] | Luo R, He Y, Liang HX, Li MX, Lin Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5, 1006–1011 (2018). doi: 10.1364/OPTICA.5.001006 |
[22] | Smalley DE, Smithwick QYJ, Bove VM Jr, Barabas J, Jolly S. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313–317 (2013). doi: 10.1038/nature12217 |
[23] | Hao ZZ, Zhang L, Gao A, Mao WB, Lyu XD et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci China Phys Mech Astron 61, 114211 (2018). doi: 10.1007/s11433-018-9241-5 |
[24] | Zhang L, Hao ZZ, Luo Q, Gao A, Zhang R et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt Lett 45, 3353–3356 (2020). doi: 10.1364/OL.393244 |
[25] | Kong YF, Wu SQ, Liu SG, Chen SL, Xu JJ. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Appl Phys Lett 92, 251107 (2008). doi: 10.1063/1.2952275 |
[26] | Dong YF, Liu SG, Kong YF, Chen SL, Rupp R et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region. Opt Lett 37, 1841–1843 (2012). doi: 10.1364/OL.37.001841 |
[27] | Tian T, Kong YF, Liu SG, Li W, Chen SL et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3: Mo. Opt Express 21, 10460–10466 (2013). doi: 10.1364/OE.21.010460 |
[28] | Zheng DH, Kong YF, Liu SG, Chen ML, Chen SL et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals. Sci Rep 6, 20308 (2016). doi: 10.1038/srep20308 |
[29] | Saeed S, Zheng DH, Liu HD, Xue LY, Wang WW et al. Rapid response of photorefraction in vanadium and magnesium co-doped lithium niobate. J Phys D Appl Phys 52, 405303 (2019). doi: 10.1088/1361-6463/ab30ed |
[30] | Zheng DH, Wang WW, Wang SL, Qu D, Liu HD et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate. Appl Phys Lett 114, 241903 (2019). doi: 10.1063/1.5107460 |
[31] | Li LL, Li YL, Zhao X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3: lone electron pair effect. Phys Rev B 96, 115118 (2017). doi: 10.1103/PhysRevB.96.115118 |
[32] | Wang SL, Shan YD, Wang WW, Zheng DH, Liu HD et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3: Bi, M (M = Zn, In, Zr) crystals. Appl Phys Lett 118, 191902 (2021). doi: 10.1063/5.0048638 |
[33] | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169 |
[34] | Földvári I, Polgár K, Voszka R, Balasanyan RN. A simple method to determine the real composition of LiNbO3 crystals. Cryst Res Technol 19, 1659–1661 (1984). doi: 10.1002/crat.2170191231 |
[35] | Polgár K, Kovács L, Földvári I, Cravero I. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Commun 59, 375–379 (1986). doi: 10.1016/0038-1098(86)90566-1 |
[36] | Feng XQ, Tang TB. Mg-doping threshold effect and H-containing defects in LiNbO3. J Phys Condes Matter 5, 2423–2430 (1993). doi: 10.1088/0953-8984/5/15/013 |
[37] | Furukawa Y, Kitamura K, Takekawa S, Niwa K, Yajima Y et al. The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure. J Cryst Growth 211, 230–236 (2000). doi: 10.1016/S0022-0248(99)00794-0 |
[38] | Bardeen J, Shockley W. Scattering of electrons in crystals in the presence of large electric fields. Phys Rev 80, 69–71 (1950). doi: 10.1103/PhysRev.80.69 |
[39] | Kaasbjerg K, Thygesen KS, Jacobsen KW. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85, 115317 (2012). doi: 10.1103/PhysRevB.85.115317 |
[40] | Kaasbjerg K, Thygesen KS, Jauho AP. Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B 87, 235312 (2013). doi: 10.1103/PhysRevB.87.235312 |
[41] | Xi JY, Long MQ, Tang L, Wang D, Shuai ZG. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348–4369 (2012). doi: 10.1039/c2nr30585b |
Supplementary information for The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility |
![]() |
Supplementary information S2 Video: 60 Hz-Display.mp4 |
![]() |
(a) Saturated diffraction efficiency, (b) response time, and (c) PR sensitivity of LN:Bia,Mg6.0 crystals as a function of Bi concentrations at 532 nm, 488 nm, and 442 nm, respectively. See Supplementary information for data details. (d) The recording-erasing process of LN:Bi1.25,Mg6.0 crystal.
Optical setup for a real-time holographic display. A He-Cd laser wave-length of 442 nm is used. A Glan-Taylor Polarizer acts as a beam splitter (BS). The diameter of the beam is adjusted appropriately by the beam expander (BE). The video animations are loaded by a spatial light modulation (SLM) on the signal beam. A controller is used to control the opening and closing process of shutters. A CCD is used to capture the holographic images. The insert shows a 4f system that performs a Fourier transform followed by an inverse Fourier transform to improve image quality. Schematic diagram of the timeline in the record-display-update process.
Holographic images during the display (at 60 Hz). I. rhythmic gymnastics. II. karate kumite. III. diving. IV. baseball. V. Olympic rings. VI. basketball. VII. athletics. VIII. shooting. IX. surfing. A multimedia video with continuous action and a refresh rate of 60 Hz is given in Supplementary information Video S2.
UV-Vis absorption spectra of (a) LN:Bia,Mg6.0, (b) LN:Bi1.0,Mgb. Absorbance difference between (c) LN:Bia,Mg6.0, (d) LN:Bi1.0,Mgb, and LN:Bi crystals. The OH– absorption spectra of (e) LN:Bia, Mg6.0 and (f) LN:Bi1.0,Mgb crystals. All the OH– spectra shown in the figures have been normalized and spectra of CLN and LN:Bi are presented for comparison.
(a) Schematic diagram of the local structure model in LN:Bi,Mg when Mg exceeds the threshold. The blue, yellow, red, purple, and orange balls represent Li, Nb, O, BiNb, and MgLi/MgNb, respectively. (b) Total unit cell energy versus lattice dilation and (c) band energy of CBM versus lattice dilation. The red and blue lines are the fitting curves.