Citation: | Koo JH, Yun HW, Lee WC, Sunwoo SH, Shim HJ et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv 5, 210131 (2022). doi: 10.29026/oea.2022.210131 |
[1] | Rossiter J. Lighting up soft robotics. Nat Mater 19, 134–135 (2020). doi: 10.1038/s41563-019-0559-1 |
[2] | Lu NS, Kim DH. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1, 53–62 (2014). doi: 10.1089/soro.2013.0005 |
[3] | Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020). doi: 10.1039/D0NR03446K |
[4] | Guo JJ, Zhou BQ, Yang CX, Dai QH, Kong LJ. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt Lett 44, 5747–5750 (2019). doi: 10.1364/OL.44.005747 |
[5] | Ramuz M, Tee BCK, Tok JBH, Bao ZN. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24, 3223–3227 (2012). doi: 10.1002/adma.201200523 |
[6] | Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin‐like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020). |
[7] | Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021). |
[8] | Koo JH, Jeong S, Shim HJ, Son D, Kim J et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017). doi: 10.1021/acsnano.7b04292 |
[9] | Kim J, Shim HJ, Yang J, Choi MK, Kim DC et al. Ultrathin quantum dot display integrated with wearable electronics. Adv Mater 29, 1700217 (2017). doi: 10.1002/adma.201700217 |
[10] | Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8, 494–499 (2009). doi: 10.1038/nmat2459 |
[11] | Kim RH, Kim DH, Xia JL, Kim BH, Park SI et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9, 929–937 (2010). doi: 10.1038/nmat2879 |
[12] | Li HC, Xu Y, Li XM, Chen Y, Jiang Y et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthcare Mater 6, 1601013 (2017). doi: 10.1002/adhm.201601013 |
[13] | Kim TH, Lee CS, Kim S, Hur J, Lee S et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 11, 5992–6003 (2017). doi: 10.1021/acsnano.7b01894 |
[14] | Lee H, Jiang Z, Yokota T, Fukuda K, Park S et al. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater Sci Eng 146, 100631 (2021). doi: 10.1016/j.mser.2021.100631 |
[15] | Song JK, Kim MS, Yoo S, Koo JH, Kim DH. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res 14, 2919–2937 (2021). doi: 10.1007/s12274-021-3447-3 |
[16] | Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28, 1801834 (2018). doi: 10.1002/adfm.201801834 |
[17] | Zhao J, Chi ZH, Yang Z, Chen XJ, Arnold MS et al. Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale 10, 5764–5792 (2018). doi: 10.1039/C7NR09472H |
[18] | Xu HH, Yin L, Liu C, Sheng X, Zhao N. Recent advances in biointegrated optoelectronic devices. Adv Mater 30, 1800156 (2018). doi: 10.1002/adma.201800156 |
[19] | Kim MS, Lee GJ, Choi C, Kim MS, Lee M et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat Electron 3, 546–553 (2020). doi: 10.1038/s41928-020-0429-5 |
[20] | Park SI, Brenner DS, Shin G, Morgan CD, Copits BA et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33, 1280–1286 (2015). doi: 10.1038/nbt.3415 |
[21] | Song YM, Xie YZ, Malyarchuk V, Xiao JL, Jung I et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). doi: 10.1038/nature12083 |
[22] | Yin D, Feng J, Ma R, Liu YF, Zhang YL et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat Commun 7, 11573 (2016). doi: 10.1038/ncomms11573 |
[23] | Haider G, Wang YH, Sonia FJ, Chiang CW, Frank O et al. Rippled metallic-nanowire/graphene/semiconductor nanostack for a gate-tunable ultrahigh-performance stretchable phototransistor. Adv Opt Mater 8, 2000859 (2020). doi: 10.1002/adom.202000859 |
[24] | Kim M, Kang P, Leem J, Nam S. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058–4065 (2017). doi: 10.1039/C6NR09338H |
[25] | Lee J, Wu J, Shi MX, Yoon J, Park SI et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 23, 986–991 (2011). doi: 10.1002/adma.201003961 |
[26] | Choi M, Jang B, Lee W, Lee S, Kim TW et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv Funct Mater 27, 1606005 (2017). doi: 10.1002/adfm.201606005 |
[27] | Li L, Lin HT, Qiao ST, Huang YZ, Li JY et al. Monolithically integrated stretchable photonics. Light Sci Appl 7, 17138 (2018). doi: 10.1038/lsa.2017.138 |
[28] | Biswas S, Shao YT, Hachisu T, Nguyen-Dang T, Visell Y. Integrated soft optoelectronics for wearable health monitoring. Adv Mater Technol 5, 2000347 (2020). doi: 10.1002/admt.202000347 |
[29] | Ji BW, Ge CF, Guo ZJ, Wang LC, Wang MH et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens Bioelectron 153, 112009 (2020). doi: 10.1016/j.bios.2020.112009 |
[30] | Koo JH, Song JK, Yoo S, Sunwoo SH, Son D et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv Mater Technol 5, 2000407 (2020). doi: 10.1002/admt.202000407 |
[31] | Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28, 4203–4218 (2016). doi: 10.1002/adma.201504150 |
[32] | Chen ZY, Obaid SN, Lu LY. Recent advances in organic optoelectronic devices for biomedical applications. Opt Mater Express 9, 3843–3856 (2019). doi: 10.1364/OME.9.003843 |
[33] | Sheng X, Gao L, Song YM, Tao H, Yun SH. Bio-inspired and bio-integrated photonic materials and devices: feature issue introduction. Opt Mater Express 10, 155–156 (2020). doi: 10.1364/OME.385739 |
[34] | Nguyen NK, Nguyen T, Nguyen TK, Yadav S, Dinh T et al. Wide-band-gap semiconductors for biointegrated electronics: recent advances and future directions. ACS Appl Electron Mater 3, 1959–1981 (2021). doi: 10.1021/acsaelm.0c01122 |
[35] | Lee W, Yun H, Song JK, Sunwoo SH, Kim DH. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc Mater Res 2, 266–281 (2021). doi: 10.1021/accountsmr.1c00020 |
[36] | Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 32, 1902743 (2020). doi: 10.1002/adma.201902743 |
[37] | Song JK, Do K, Koo JH, Son D, Kim DH. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull 44, 643–656 (2019). doi: 10.1557/mrs.2019.183 |
[38] | Ahn JH, Je JH. Stretchable electronics: Materials, architectures and integrations. J Phys D Appl Phys 45, 103001 (2012). doi: 10.1088/0022-3727/45/10/103001 |
[39] | Wang CF, Wang CH, Huang ZL, Xu S. Materials and structures toward soft electronics. Adv Mater 30, 1801368 (2018). doi: 10.1002/adma.201801368 |
[40] | Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 16, 1906270 (2020). doi: 10.1002/smll.201906270 |
[41] | Zhao Y, Yang WD, Tan YJ, Li S, Zeng XT et al. Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL Mater 7, 031508 (2019). doi: 10.1063/1.5083942 |
[42] | Kim Y, Zhu J, Yeom B, Di Prima M, Su XL et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). doi: 10.1038/nature12401 |
[43] | Araby S, Meng QS, Zhang LQ, Zaman I, Majewski P et al. Elastomeric composites based on carbon nanomaterials. Nanotechnology 26, 112001 (2015). doi: 10.1088/0957-4484/26/11/112001 |
[44] | Shashok ZS, Prokopchuk NR, Vishnevskii KV, Krauklis AV, Borisevich KO et al. Properties of elastomeric composites with functionalized carbon nanomaterial. J Eng Phys Thermophys 90, 336–343 (2017). doi: 10.1007/s10891-017-1572-3 |
[45] | Frogley MD, Ravich D, Wagner HD. Mechanical properties of carbon nanoparticle-reinforced elastomers. Comp Sci Technol 63, 1647–1654 (2003). doi: 10.1016/S0266-3538(03)00066-6 |
[46] | Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv Mater 31, 1806133 (2019). doi: 10.1002/adma.201806133 |
[47] | Tee BCK, Ouyang JY. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater 30, 1802560 (2018). doi: 10.1002/adma.201802560 |
[48] | Wang M, Baek P, Akbarinejad A, Barker D, Travas-Sejdic J. Conjugated polymers and composites for stretchable organic electronics. J Mater Chem C 7, 5534–5552 (2019). doi: 10.1039/C9TC00709A |
[49] | Huang S, Liu Y, Zhao Y, Ren ZF, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater 29, 1805924 (2019). doi: 10.1002/adfm.201805924 |
[50] | Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent advances in transparent electronics with stretchable forms. Adv Mater 31, 1804690 (2019). doi: 10.1002/adma.201804690 |
[51] | Kim T, Cho M, Yu KJ. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials 11, 1163 (2018). doi: 10.3390/ma11071163 |
[52] | Hong S, Lee S, Kim DH. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc IEEE 107, 2185–2197 (2019). doi: 10.1109/JPROC.2019.2909666 |
[53] | Jiang Z, Nayeem OG, Fukuda K, Ding S, Jin H et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 31, 1903446 (2019). doi: 10.1002/adma.201903446 |
[54] | Matsuhisa N, Chen XD, Bao ZN, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 48, 2946–2966 (2019). doi: 10.1039/C8CS00814K |
[55] | Yang CH, Suo ZG. Hydrogel ionotronics. Nat Rev Mater 3, 125–142 (2018). doi: 10.1038/s41578-018-0018-7 |
[56] | Veerapandian S, Jang W, Seol JB, Wang HB, Kong M et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 20, 533–540 (2021). doi: 10.1038/s41563-020-00863-7 |
[57] | Noh J, Kim GU, Han S, Oh SJ, Jeon Y et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett 6, 2512–2518 (2021). doi: 10.1021/acsenergylett.1c00829 |
[58] | Ruh D, Reith P, Sherman S, Theodor M, Ruhhammer J et al. Stretchable optoelectronic circuits embedded in a polymer network. Adv Mater 26, 1706–1710 (2014). doi: 10.1002/adma.201304447 |
[59] | Chen JY, Hsieh HC, Chiu YC, Lee WY, Hung CC et al. Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. J Mater Chem C 8, 873–882 (2020). doi: 10.1039/C9TC05075B |
[60] | Chen YT, Carmichael RS, Carmichael TB. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl Mater Interfaces 11, 31210–31219 (2019). doi: 10.1021/acsami.9b11149 |
[61] | Liu HS, Pan BC, Liou GS. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9, 2633–2639 (2017). doi: 10.1039/C6NR09220A |
[62] | Zhou YL, Zhao CS, Wang JC, Li YZ, Li CX et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater Lett 1, 511–518 (2019). doi: 10.1021/acsmaterialslett.9b00376 |
[63] | Yu Q, Huang HW, Peng XS, Ye ZZ. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement. Nanoscale 3, 3868–3875 (2011). doi: 10.1039/c1nr10578g |
[64] | Pereira LFC, Rocha CG, Latgé A, Ferreira MS. A computationally efficient method for calculating the maximum conductance of disordered networks: application to one-dimensional conductors. J Appl Phys 108, 103720 (2010). doi: 10.1063/1.3514007 |
[65] | Wang H, Yang WJ, Li KB, Li GH. The hydrothermal synthesis of ultra-high aspect ratio Ag nanoflakes and their performance as conductive fillers in heaters and pastes. RSC Adv 8, 8937–8943 (2018). doi: 10.1039/C7RA11937B |
[66] | Zappielo CD, Nanicuacua DM, Dos Santos WNL, Da Silva DLF, Dall’Antônia LH et al. Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J Braz Chem Soc 27, 1715–1726 (2016). doi: 10.5935/0103-5053.20160052 |
[67] | Parangusan H, Ponnamma D, Hassan MK, Adham S, Al-Maadeed MAA. Designing carbon nanotube-based oil absorbing membranes from gamma irradiated and electrospun polystyrene nanocomposites. Materials 12, 709 (2019). doi: 10.3390/ma12050709 |
[68] | Kellici S, Acord J, Ball J, Reehal HS, Morgan D et al. A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Adv 4, 14858–14861 (2014). doi: 10.1039/c3ra47573e |
[69] | Koo JH, Song JK, Kim DH. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019). doi: 10.1088/1361-6528/aafbbe |
[70] | O’Connell MJ, Eibergen EE, Doorn SK. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater 4, 412–418 (2005). doi: 10.1038/nmat1367 |
[71] | Shayegh S, Bioki HA, Zarandi MB, Samani NK, Rahnamanic A. ZnS nanoparticles incorporated in polyaniline composite: preparation and optical characterization. Polym Sci Ser B 59, 616–623 (2017). doi: 10.1134/S1560090417050104 |
[72] | Jun S, Choi KW, Kim KS, Kim DU, Lee CJ et al. Stretchable photodetector utilizing the change in capacitance formed in a composite film containing semiconductor particles. Comp Sci Technol 182, 107773 (2019). doi: 10.1016/j.compscitech.2019.107773 |
[73] | Choi SB, Lee CJ, Han CJ, Kang JW, Lee CR et al. Self-healable capacitive photodetectors with stretchability based on composite of ZnS: Cu particles and reversibly crosslinkable silicone elastomer. Adv Mater Technol 5, 2000327 (2020). doi: 10.1002/admt.202000327 |
[74] | Tai CL, Hong WL, Kuo YT, Chang CY, Niu MC et al. Ultrastable, deformable, and stretchable luminescent organic-inorganic perovskite nanocrystal-polymer composites for 3D printing and white light-emitting diodes. ACS Appl Mater Interfaces 11, 30176–30184 (2019). doi: 10.1021/acsami.9b06248 |
[75] | Xuan TT, Huang JJ, Liu H, Lou SQ, Cao LY et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem Mater 31, 1042–1047 (2019). doi: 10.1021/acs.chemmater.8b04596 |
[76] | Wu ZW, Li P, Zhang YK, Zheng ZJ. Flexible and stretchable perovskite solar cells: device design and development methods. Small Methods 2, 1800031 (2018). |
[77] | Kong LQ, Zhang L, Meng ZH, Xu C, Lin NB et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology 29, 315203 (2018). doi: 10.1088/1361-6528/aac39c |
[78] | Weaver J, Zakeri R, Aouadi S, Kohli P. Synthesis and characterization of quantum dot–polymer composites. J Mater Chem 19, 3198–3206 (2009). doi: 10.1039/b820204d |
[79] | Jeong SM, Song S, Kim H, Baek SH, Kwak JS. Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer. RSC Adv 7, 8816–8822 (2017). doi: 10.1039/C7RA00195A |
[80] | Xu XJ, Hu LF, Gao N, Liu SX, Wageh S et al. Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv Funct Mater 25, 445–454 (2015). doi: 10.1002/adfm.201403065 |
[81] | Liu M, Zhong GH, Yin YM, Miao JS, Li K et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci 4, 1700335 (2017). doi: 10.1002/advs.201700335 |
[82] | Shu YF, Lin X, Qin HY, Hu Z, Jin YZ et al. Quantum dots for display applications. Angew Chem Int Ed 59, 22312–22323 (2020). doi: 10.1002/anie.202004857 |
[83] | Kim DC, Yun H, Kim J, Seung H, Yu WS et al. Three-dimensional foldable quantum dot light-emitting diodes. Nat Electron 4, 671–680 (2021). doi: 10.1038/s41928-021-00643-4 |
[84] | Choi MK, Yang J, Kim DC, Dai ZH, Kim J et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv Mater 30, 1703279 (2018). doi: 10.1002/adma.201703279 |
[85] | Ashizawa M, Zheng Y, Tran H, Bao ZN. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog Polymer Sci 100, 101181 (2020). doi: 10.1016/j.progpolymsci.2019.101181 |
[86] | Choi D, Kim H, Persson N, Chu PH, Chang M et al. Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem Mater 28, 1196–1204 (2016). doi: 10.1021/acs.chemmater.5b04804 |
[87] | Kim HJ, Sim K, Thukral A, Yu CJ. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv 3, e1701114 (2017). doi: 10.1126/sciadv.1701114 |
[88] | Wang ZY, Wang T, Zhuang MD, Xu HX. Stretchable polymer composite with a 3D segregated structure of PEDOT: PSS for multifunctional touchless sensing. ACS Appl Mater Interfaces 11, 45301–45309 (2019). doi: 10.1021/acsami.9b16353 |
[89] | Luo RB, Li HB, Du BS, Zhou SS, Zhu YX. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Organ Electron 76, 105451 (2020). doi: 10.1016/j.orgel.2019.105451 |
[90] | Luan YG, Noh JS, Kim SH. Facile control of stretchability and electrical resistance of elastomer/polyaniline composites for stretchable conductors. Mater Chem Phys 190, 68–73 (2017). doi: 10.1016/j.matchemphys.2017.01.006 |
[91] | Wang T, Zhang Y, Liu QC, Cheng W, Wang XR et al. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv Funct Mater 28, 1705551 (2018). doi: 10.1002/adfm.201705551 |
[92] | Kurian AS, Souri H, Mohan VB, Bhattacharyya D. Highly stretchable strain sensors based on polypyrrole-silicone rubber composites for human motion detection. Sens Actuators A Phys 312, 112131 (2020). doi: 10.1016/j.sna.2020.112131 |
[93] | Li MF, Li HY, Zhong WB, Zhao QH, Wang D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6, 1313–1319 (2014). doi: 10.1021/am4053305 |
[94] | Wang GJN, Gasperini A, Bao ZN. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater 4, 1700429 (2018). doi: 10.1002/aelm.201700429 |
[95] | Rodriquez D, Kim JH, Root SE, Fei ZP, Boufflet P et al. Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics. ACS Appl Mater Interfaces 9, 8855–8862 (2017). doi: 10.1021/acsami.6b16115 |
[96] | Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). doi: 10.1038/nature20102 |
[97] | Ocheje MU, Charron BP, Nyayachavadi A, Rondeau-Gagne S. Stretchable electronics: recent progress in the preparation of stretchable and self-healing semiconducting conjugated polymers. Flex Print Electron 2, 043002 (2017). doi: 10.1088/2058-8585/aa9c9b |
[98] | Trung TQ, Lee NE. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 29, 1603167 (2017). doi: 10.1002/adma.201603167 |
[99] | Shim HJ, Sunwoo SH, Kim Y, Koo JH, Kim DH. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv Healthcare Mater 10, 2002105 (2021). doi: 10.1002/adhm.202002105 |
[100] | Kim Y, Park C, Im S, Kim JH. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices. Sci Rep 10, 16488 (2020). doi: 10.1038/s41598-020-73259-x |
[101] | Lian F, Wang CX, Wu Q, Yang MH, Wang ZY et al. In situ synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Adv 10, 1281–1286 (2020). doi: 10.1039/C9RA06729A |
[102] | Wang ZG, Chen BK, Zhu MS, Kershaw SV, Zhi CY et al. Stretchable and thermally stable dual emission composite films of on-purpose aggregated copper nanoclusters in carboxylated polyurethane for remote white light-emitting devices. ACS Appl Mater Interfaces 8, 33993–33998 (2016). doi: 10.1021/acsami.6b10828 |
[103] | Jiang DH, Liao YC, Cho CJ, Veeramuthu L, Liang FC et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl Mater Interfaces 12, 14408–14415 (2020). doi: 10.1021/acsami.9b23291 |
[104] | Costa P, Maceiras A, Sebastian MS, García-Astrain C, Vilas JL et al. On the use of surfactants for improving nanofiller dispersion and piezoresistive response in stretchable polymer composites. J Mater Chem C 6, 10580–10588 (2018). doi: 10.1039/C8TC03829E |
[105] | Savagatrup S, Chan E, Renteria-Garcia SM, Printz AD, Zaretski AV et al. Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater 25, 427–436 (2015). doi: 10.1002/adfm.201401758 |
[106] | Fan X, Nie WY, Tsai H, Wang NX, Huang HH et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci 6, 1900813 (2019). doi: 10.1002/advs.201900813 |
[107] | Tsai JH, Lai YC, Higashihara T, Lin CJ, Ueda M et al. Enhancement of P3HT/PCBM photovoltaic efficiency using the surfactant of triblock copolymer containing poly(3-hexylthiophene) and poly(4-vinyltriphenylamine) segments. Macromolecules 43, 6085–6091 (2010). doi: 10.1021/ma1011182 |
[108] | Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 7, eabd9715 (2021). doi: 10.1126/sciadv.abd9715 |
[109] | Shi H, Liu CC, Jiang QL, Xu JK. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater 1, 1500017 (2015). doi: 10.1002/aelm.201500017 |
[110] | Lim C, Shin Y, Jung J, Kim JH, Lee S et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 7, 031502 (2019). doi: 10.1063/1.5063657 |
[111] | Choi S, Han SI, Jung D, Hwang HJ, Lim C et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol 13, 1048–1056 (2018). doi: 10.1038/s41565-018-0226-8 |
[112] | Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF et al. High-density stretchable electrode grids for chronic neural recording. Adv Mater 30, 1706520 (2018). doi: 10.1002/adma.201706520 |
[113] | Lee S, Shin S, Lee S, Seo J, Lee J et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater 25, 3114–3121 (2015). doi: 10.1002/adfm.201500628 |
[114] | Catenacci MJ, Reyes C, Cruz MA, Wiley BJ. Stretchable conductive composites from Cu-Ag nanowire felt. ACS Nano 12, 3689–3698 (2018). doi: 10.1021/acsnano.8b00887 |
[115] | Kim I, Woo K, Zhong ZY, Ko P, Jang Y et al. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale 10, 7890–7897 (2018). doi: 10.1039/C7NR09421C |
[116] | Li Z, Le TR, Wu ZK, Yao YG, Li LY et al. Rational design of a printable, highly conductive silicone-based electrically conductive adhesive for stretchable radio-frequency antennas. Adv Funct Mater 25, 464–470 (2015). doi: 10.1002/adfm.201403275 |
[117] | Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater 16, 834–840 (2017). doi: 10.1038/nmat4904 |
[118] | Wang JX, Cai GF, Li SH, Gao DC, Xiong JQ et al. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv Mater 30, 1706157 (2018). doi: 10.1002/adma.201706157 |
[119] | Kim SH, Jung S, Yoon IS, Lee C, Oh Y et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv Mater 30, 1800109 (2018). doi: 10.1002/adma.201800109 |
[120] | Oh Y, Yoon IS, Lee C, Kim SH, Ju BK et al. Selective photonic sintering of Ag flakes embedded in silicone elastomers to fabricate stretchable conductors. J Mater Chem C 5, 11733–11740 (2017). doi: 10.1039/C7TC03828C |
[121] | Bhagavatheswaran ES, Parsekar M, Das A, Le HH, Wiessner S et al. Construction of an interconnected nanostructured carbon black network: development of highly stretchable and robust elastomeric conductors. J Phys Chem C 119, 21723–21731 (2015). doi: 10.1021/acs.jpcc.5b06629 |
[122] | Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008). doi: 10.1126/science.1160309 |
[123] | Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10, 424–428 (2011). doi: 10.1038/nmat3001 |
[124] | Kim T, Park J, Sohn J, Cho D, Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016). doi: 10.1021/acsnano.6b01355 |
[125] | Wang Y, Zhu CX, Pfattner R, Yan HP, Jin LH et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 3, e1602076 (2017). doi: 10.1126/sciadv.1602076 |
[126] | Ameri SK, Ho R, Jang H, Tao L, Wang YH et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017). doi: 10.1021/acsnano.7b02182 |
[127] | Zhang L, Kumar KS, He H, Cai CJ, He X et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 11, 4683 (2020). doi: 10.1038/s41467-020-18503-8 |
[128] | Feig VR, Tran H, Lee M, Bao ZN. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 9, 2740 (2018). doi: 10.1038/s41467-018-05222-4 |
[129] | Choong CL, Shim MB, Lee BS, Jeon S, Ko DS et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26, 3451–3458 (2014). doi: 10.1002/adma.201305182 |
[130] | Lu Y, Liu ZQ, Yan HM, Peng Q, Wang RG et al. Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability. ACS Appl Mater Interfaces 11, 20453–20464 (2019). doi: 10.1021/acsami.9b05464 |
[131] | Seol YG, Trung TQ, Yoon OJ, Sohn IY, Lee NE. Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J Mater Chem 22, 23759–23766 (2012). doi: 10.1039/c2jm33949h |
[132] | Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K et al. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthcare Mater 3, 1919–1927 (2014). doi: 10.1002/adhm.201400209 |
[133] | Zhu CX, Chortos A, Wang Y, Pfattner R, Lei T, Hinckley AC et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat Electron 1, 183–190 (2018). doi: 10.1038/s41928-018-0041-0 |
[134] | Wang GJN, Zheng Y, Zhang S, Kang J, Wu HC et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater 31, 6465–6475 (2019). doi: 10.1021/acs.chemmater.8b04314 |
[135] | Savagatrup S, Printz AD, Wu HS, Rajan KM, Sawyer EJ et al. Viability of stretchable poly(3-heptylthiophene) (P3HpT) for organic solar cells and field-effect transistors. Synth Met 203, 208–214 (2015). doi: 10.1016/j.synthmet.2015.02.031 |
[136] | Peng R, Pang B, Hu DQ, Chen MJ, Zhang GB et al. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J Mater Chem C 3, 3599–3606 (2015). doi: 10.1039/C4TC02476A |
[137] | Lu C, Lee WY, Gu XD, Xu J, Chou HH et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene-diketopyrrolopyrrole) polymers. Adv Electron Mater 3, 1600311 (2017). doi: 10.1002/aelm.201600311 |
[138] | Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater 17, 2674–2679 (2007). doi: 10.1002/adfm.200601248 |
[139] | Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv Funct Mater 28, 1804222 (2018). doi: 10.1002/adfm.201804222 |
[140] | Wang GJN, Shaw L, Xu J, Kurosawa T, Schroeder BC et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Funct Mater 26, 7254–7262 (2016). doi: 10.1002/adfm.201602603 |
[141] | Shin M, Oh JY, Byun KE, Lee YJ, Kim B et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv Mater 27, 1255–1261 (2015). doi: 10.1002/adma.201404602 |
[142] | Song E, Kang B, Choi HH, Sin DH, Lee H et al. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv Electron Mater 2, 1500250 (2016). doi: 10.1002/aelm.201500250 |
[143] | Xu J, Wang SH, Wang GJN, Zhu CX, Luo SC et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017). doi: 10.1126/science.aah4496 |
[144] | Wang SH, Xu J, Wang WC, Wang GJN, Rastak R et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). doi: 10.1038/nature25494 |
[145] | Sun TL, Scott JI, Wang M, Kline RJ, Bazan GC et al. Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater 3, 1600388 (2017). doi: 10.1002/aelm.201600388 |
[146] | Kim HJ, Thukral A, Sharma S, Yu CJ. Biaxially stretchable fully elastic transistors Based on rubbery semiconductor nanocomposites. Adv Mater Technol 3, 1800043 (2018). doi: 10.1002/admt.201800043 |
[147] | Sim K, Rao Z, Kim HJ, Thukral A, Shim H et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci Adv 5, eaav5749 (2019). doi: 10.1126/sciadv.aav5749 |
[148] | Zhang GY, McBride M, Persson N, Lee S, Dunn TJ et al. Versatile interpenetrating polymer network approach to robust stretchable electronic devices. Chem Mater 29, 7645–7652 (2017). doi: 10.1021/acs.chemmater.7b03019 |
[149] | Zheng Y, Wang GJN, Kang J, Nikolka M, Wu HC et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv Funct Mater 29, 1905340 (2019). doi: 10.1002/adfm.201905340 |
[150] | Roh E, Hwang BU, Kim D, Kim BY, Lee NE. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9, 6252–6261 (2015). doi: 10.1021/acsnano.5b01613 |
[151] | Wang JX, Yan CY, Chee KJ, Lee PS. Highly stretchable and self-deformable alternating current electroluminescent devices. Adv Mater 27, 2876–2882 (2015). doi: 10.1002/adma.201405486 |
[152] | Bade SGR, Shan X, Hoang PT, Li JQ, Geske T et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater 29, 1607053 (2017). doi: 10.1002/adma.201607053 |
[153] | Fernandes DF, Majidi C, Tavakoli M. Digitally printed stretchable electronics: a review. J Mater Chem C 7, 14035–14068 (2019). doi: 10.1039/C9TC04246F |
[154] | Larmagnac A, Eggenberger S, Janossy H, Vörös J. Stretchable electronics based on Ag-PDMS composites. Sci Rep 4, 7254 (2014). doi: 10.1038/srep07254 |
[155] | Kim TH, Carlson A, Ahn JH, Won SM, Wang SD et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl Phys Lett 94, 113502 (2009). doi: 10.1063/1.3099052 |
[156] | Al-Halhouli A, Qitouqa H, Alashqar A, Abu-Khalaf J. Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sens Rev 38, 438–452 (2018). doi: 10.1108/SR-07-2017-0126 |
[157] | Zhao WY, Wang ZY, Zhang JP, Wang XP, Xu YT et al. Vat photopolymerization 3D printing of advanced soft sensors and actuators: from architecture to function. Adv Mater Technol 6, 2001218 (2021). doi: 10.1002/admt.202001218 |
[158] | Wang ZY, Gao WL, Zhang Q, Zheng KQ, Xu JW et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors. ACS Appl Mater Interfaces 11, 1344–1352 (2019). doi: 10.1021/acsami.8b16139 |
[159] | Mizzi L, Salvati E, Spaggiari A, Tan JC, Korsunsky AM. Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167, 105242 (2020). doi: 10.1016/j.ijmecsci.2019.105242 |
[160] | Yao SS, Yang J, Poblete FR, Hu XG, Zhu Y. Multifunctional electronic textiles using silver nanowire composites. ACS Appl Mater Interfaces 11, 31028–31037 (2019). doi: 10.1021/acsami.9b07520 |
[161] | Zambrano BL, Renz AF, Ruff T, Lienemann S, Tybrandt K et al. Soft electronics based on stretchable and conductive nanocomposites for biomedical applications. Adv Healthcare Mater 10, 2001397 (2021). doi: 10.1002/adhm.202001397 |
[162] | Ko Y, Kim J, Kim D, Yamauchi Y, Kim JH et al. A simple silver nanowire patterning method based on poly(ethylene glycol) photolithography and its application for soft electronics. Sci Rep 7, 2282 (2017). doi: 10.1038/s41598-017-02511-8 |
[163] | Zhou HY, Park J, Lee Y, Park JM, Kim JH et al. Water passivation of perovskite nanocrystals enables air-stable intrinsically stretchable color-conversion layers for stretchable displays. Adv Mater 32, 2001989 (2020). doi: 10.1002/adma.202001989 |
[164] | Kim T, Kim JH, Kang TE, Lee C, Kang H et al. Flexible, highly efficient all-polymer solar cells. Nat Commun 6, 8547 (2015). doi: 10.1038/ncomms9547 |
[165] | Wang ZY, Xu MC, Li ZL, Gao YR, Yang LP et al. Intrinsically stretchable organic solar cells beyond 10% power conversion efficiency enabled by transfer printing method. Adv Funct Mater 31, 2103534 (2021). doi: 10.1002/adfm.202103534 |
[166] | Hsieh YT, Chen JY, Fukuta S, Lin PC, Higashihara T et al. Realization of intrinsically stretchable organic solar cells enabled by charge-extraction layer and photoactive material engineering. ACS Appl Mater Interfaces 10, 21712–21720 (2018). doi: 10.1021/acsami.8b04582 |
[167] | Matsuhisa N, Niu SM, O’Neill SJK, Kang J, Ochiai Y et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021). doi: 10.1038/s41586-021-04053-6 |
[168] | Yu ZB, Niu XF, Liu ZT, Pei QB. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater 23, 3989–3994 (2011). doi: 10.1002/adma.201101986 |
[169] | Wang RR, Zhai HT, Wang T, Wang X, Cheng Y et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res 9, 2138–2148 (2016). doi: 10.1007/s12274-016-1103-0 |
[170] | Dauzon E, Lin YB, Faber H, Yengel E, Sallenave X et al. Stretchable and transparent conductive PEDOT: PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv Funct Mater 30, 2001251 (2020). doi: 10.1002/adfm.202001251 |
[171] | Forrest S R, Thompson ME. Introduction: organic electronics and optoelectronics. Chem Rev 107, 923–925 (2007). doi: 10.1021/cr0501590 |
[172] | Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282 |
[173] | Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Organic light detectors: photodiodes and phototransistors. Adv Mater 25, 4267–4295 (2013). doi: 10.1002/adma.201204979 |
[174] | Liang JJ, Li L, Niu XF, Yu ZB, Pei QB. Elastomeric polymer light-emitting devices and displays. Nat Photonics 7, 817–824 (2013). doi: 10.1038/nphoton.2013.242 |
[175] | Larson C, Peele B, Li S, Robinson S, Totaro M et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). doi: 10.1126/science.aac5082 |
[176] | Liang JJ, Li L, Tong K, Ren Z, Hu W et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014). doi: 10.1021/nn405887k |
[177] | Jao CC, Chang JR, Ya CY, Chen WC, Cho CJ et al. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym Int 70, 426–431 (2021). doi: 10.1002/pi.6023 |
[178] | Wang JX, Yan CY, Kang WB, Lee PS. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 6, 10734–10739 (2014). doi: 10.1039/C4NR02462A |
[179] | Yan CY, Wang JX, Wang X, Kang WB, Cui MQ et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater 26, 943–950 (2014). doi: 10.1002/adma.201304226 |
[180] | Liu K, Bian YS, Kuang JH, Huang X, Li Y et al. Ultrahigh-performance optoelectronic skin based on intrinsically stretchable perovskite-polymer heterojunction transistors. Adv Mater 34, 2107304 (2022). doi: 10.1002/adma.202107304 |
[181] | Li L, Liang JJ, Gao HE, Li Y, Niu XF et al. A solid-state intrinsically stretchable polymer solar cell. ACS Appl Mater Interfaces 9, 40523–40532 (2017). doi: 10.1021/acsami.7b12908 |
[182] | Shin H, Sharma BK, Lee SW, Lee JB, Choi M et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl Mater Interfaces 11, 14222–14228 (2019). doi: 10.1021/acsami.8b22135 |
[183] | Son D, Kang J, Vardoulis O, Kim Y, Matsuhisa N et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 13, 1057–1065 (2018). doi: 10.1038/s41565-018-0244-6 |
Strategy for the development of intrinsically stretchable optoelectronics, based on intrinsically stretchable materials and novel fabrication techniques.
Constituents of intrinsically stretchable conducting and semiconducting nanocomposites. Various (a–d) electronic filler materials, (e) elastomers, and (f) surfactants are employed to develop intrinsically stretchable conducting/semiconducting nanocomposites. Figure reproduced with permission from: (a) ref.63, RSC Publishing, ref.64, IOP Publishing, ref.65, under a Creative Commons Attribution-Non Commercial 3.0 Unported License; (b) ref.66, 67, under a Creative Commons Attribution 4.0 International License, ref.68, RSC Publishing; (c) ref.80, 82, John Wiley and Sons, ref.81, under a Creative Commons Attribution 4.0 International License.
Various conducting/semiconducting nanocomposites with intrinsic stretchability. Intrinsically stretchable conducting nanocomposites based on: (a) CB and silica particles; (b) SWCNTs and PU-PEDOT:PSS; (c, d) Ag-Au NWs and SBS; and (e, f) PEDOT:PSS incorporated with STEC enhancer. Intrinsically stretchable semiconducting nanocomposites based on: (g) ZNS:Cu microparticles and PDMS; (h) MAPbBr3 microparticles and PEO; (i–k) P3HT nanofibers and SEBS; and (l) DPPT-TT nanofibers and SEBS. Figure reproduced from: (a) ref.121, (b) ref.150, American Chemical Society; (c, d) ref.111, Springer Nature; (e, f) ref.125, under a Creative Commons Attribution-NonCommercial 4.0 International License; (g) ref.151, (i) ref.141, (j, k) ref.142, John Wiley and Sons; (l) ref.143, American Association for the Advancement of Science.
Representative fabrication methods of intrinsically stretchable electronic materials. (a) Schematic describing stencil printing method and (b) optical image of the patterned Ag flake nanocomposite. Scale bar: 10 mm. (c) Schematic of a soft lithography method for patterning intrinsically stretchable materials. (d) Schematic showing inkjet printing of intrinsically stretchable materials. (e) Schematic description of 3D printing process for intrinsically stretchable materials. (f) Optical image of 3D-printed graphene/PDMS composite. (g) Schematic for laser patterning of intrinsically stretchable materials. (h) Optical image of the laser-patterned Ag NW/TPU nanocomposite, laminated on a textile with different line widths. Inset shows an SEM image of the Ag NW/TPU pattern. Scale bar: 5 mm. (i) Digital image of a deformed textile patch. (j) Schematics describing the photolithography process. (k) Optical image of the Ag NW-based micropatterns on polyethylene glycol. Scale bar: 5 mm. (l) An SEM image of the Ag NW micropatterns on a glass substrate. Figure reproduced with permission from: (b) ref.154, under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License; (f) ref.158, (h, i) ref.160, American Chemical Society; (k, l) ref.162, Creative Commons Attribution 4.0 International License.
Optically active materials with intrinsic stretchability. (a) PeNCs mixed in SEBS and its (b) PL intensity and (c) PL quantum yield with respect to various applied strains. (d) Intrinsically stretchable emitting layer based on perovskite microcrystals in PEO. (e) SEM images of the layer before and during stretching with different strains. (f) PL intensity of the layer before and during stretching with 50% strain. (g) Photo-absorbing blended film of PBDTTTPD:P(NDI2HD-T) with intrinsic stretchability. (h) Stress-strain curve showing the elastic modulus and (i) toughness measurement results of the blend film. (j) Schematic of photo-absorbing layer fabrication based on mixture of PTB7-Th, IEICO-4F, and PDMS. (k) Schematic showing the role of PDMS for intrinsic stretchability. (l) The crack onset strain and elastic modulus of the film with respect to different PDMS concentrations. Figure reproduced with permission from: (a–c) ref.163, (d–f) ref.152, John Wiley and Sons; (g–i) ref.164, under a Creative Commons Attribution 4.0 International License; (j–l) ref.165, John Wiley and Sons.
Charge transport materials with intrinsic stretchability. (a) Intrinsically stretchable hole transport layer of Triton X-added PEDOT:PSS. (b) Young’s modulus and crack onset strain (COS) of pristine and Triton X-added PEDOT:PSS layer. (c) Raman spectroscopy analysis. (d) SEM and (e) AFM images of the film after applying strain of 160%. (f) Intrinsically stretchable electron transport layer based on NBR and PFN. (g) Optical microscope image showing clean film without any cracks developed after applying 60% strain. (h) Current-voltage characteristics of the hybrid film. Figure reproduced with permission from: (a–e) ref.108, under a Creative Commons Attribution NonCommercial License 4.0. (f–h) ref.166, American Chemical Society.
Intrinsically stretchable conductors in optoelectronic applications. (a) AFM image of SWCNT-based elastomeric composite electrode. (b) Optical transmittance of the electrode. Electrical performance of the electrode during (c) different stretching strains and (d) cyclic stretching test. (e) Changes in surface morphology of intrinsically stretchable electrodes fabricated by mixing PEDOT:PSS, PEO, and Zonyl with different ratios. (f) Change in resistance of the electrodes with respect to increasing the applied strain. (g) Stability of the optimized electrode during cyclic stretching. Figure reproduced with permission from: (a–d) ref.168, (e–g) ref.170, John Wiley and Sons.
LECs with intrinsic stretchability. (a) Exploded view of hyperelastic LEC based on ZnS phosphor-doped stretchable EML and stretchable hydrogel electrodes. (b) Stress-strain curves and (c) relative illuminance measurements of the stretchable LEC. (d) Photographs of the hyperelastic LEC during stretching. (e) Multipixel display and (f) bio-inspired skin display based on the hyperelasitc LEC. Figure reproduced with permission from: (a–f) ref.175, American Association for the Advancement of Science.
LEDs with intrinsic stretchability. (a) Structure of the intrinsically stretchable LED based on Go-soldered Ag NW/PUA composite electrodes and OXD-7 mixed white-light-emitting layer. (b) Photographs of the stretchable LED before and during stretching. (c) Stability of the stretchable LED after cyclic stretching tests. (d) Chemical structure of a stretchable EML of PF-b-OU copolymer. (e) Photograph of the stretchable LED during stretching with 150% strain. (f) Change in luminance of the LED after stretching cycles. (g) Structure of the stretchable LED based on small-molecule surfactant added stretchable layers. (h) Luminescence and current density of the stretchable LED. Change in luminescence with respect to (j) increasing strain and (j) stretching cycles. (k) Photographs of the stretchable LED working after poking with a ballpoint pen. Figure reproduced from: (a–c) ref.176, American Chemical Society; (d–f) ref.177, John Wiley and Sons; (g–k) ref.109, under a Creative Commons Attribution NonCommercial License 4.0.
PDs and PVs with intrinsic stretchability. (a) Photograph of the intrinsically stretchable PD based on Zn2SnO4 NW/PDMS composite and Ag NW electrodes. (b) Current-voltage characteristic of the PD. (c) Photographs of the PD during stretching with different strains. (d) Photoresponses of the PD with respect to applied strains with different amounts. (e) Photograph of the intrinsically stretchable PD based on ZnO NW/PDMS composite and Ag NWs. (f) Schematic showing the effect of stretching on the NW surface. Changes in (g) on/off ratio and (h) response time of the PD array at different stretching strains. (i) Structure of intrinsically stretchable solar cell based on SWCNT/Ag NW-PUA composite electrodes and (PTB7)/PC71BM photo-absorbing layer. (j) Photographs of the solar cell before and during stretching. Stability of the stretchable solar cell in terms of (k) J-V characteristics and (l) PCE during stretching. (m) Structure of the intrinsically stretchable solar cell based on Ag NW/TPU composite electrodes and PTB7-Th:IEICO-4F heterojunction film. (n) Schematic showing the adhesion of photo-absorbing layer and HTL. (o) Optical image of the photo-absorbing layer under 20% strain. (p) PCE of the solar cell during stretching. Figure reproduced with permission from: (a–d) ref.178, The Royal Society of Chemistry; (e–h) ref.179, John Wiley and Sons; (i–l) ref.180, American Chemical Society; (m–p) ref.165, John Wiley and Sons.
Intrinsically stretchable optoelectronic systems. (a) Photographs of an intrinsically stretchable alternating current EL display stably operating before and after stretching. (b) Photographs of the intrinsically stretchable display mounted on hand skin. (c) Photographs showing an intrinsically stretchable display being distorted by stretching. Figure reproduced with permission from: (a, b) ref.62, (c) ref.182, American Chemical Society.