Koo JH, Yun HW, Lee WC, Sunwoo SH, Shim HJ et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv 5, 210131 (2022). doi: 10.29026/oea.2022.210131
Citation: Koo JH, Yun HW, Lee WC, Sunwoo SH, Shim HJ et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv 5, 210131 (2022). doi: 10.29026/oea.2022.210131

Review Open Access

Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems

More Information
  • These authors contributed equally to this work

  • *Corresponding author: DH Kim, E-mail: dkim98@snu.ac.kr
  • In recent years, significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices. In general, stretchability has been achieved through geometrical modifications of device components, such as with serpentine interconnects or buckled substrates. However, the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics. Therefore, intrinsically stretchable optoelectronics have been proposed as an alternative approach. Herein, we review the recent advances in soft electronic materials for application in intrinsically stretchable optoelectronic devices. First, we introduce various intrinsically stretchable electronic materials, comprised of electronic fillers, elastomers, and surfactants, and exemplify different intrinsically stretchable conducting and semiconducting composites. We also describe the processing methods used to fabricate the electrodes, interconnections, charge transport layers, and optically active layers used in intrinsically stretchable optoelectronic devices. Subsequently, we review representative examples of intrinsically stretchable optoelectronic devices, including light-emitting capacitors, light-emitting diodes, photodetectors, and photovoltaics. Finally, we briefly discuss intrinsically stretchable integrated optoelectronic systems.
  • 加载中
  • [1] Rossiter J. Lighting up soft robotics. Nat Mater 19, 134–135 (2020). doi: 10.1038/s41563-019-0559-1

    CrossRef Google Scholar

    [2] Lu NS, Kim DH. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1, 53–62 (2014). doi: 10.1089/soro.2013.0005

    CrossRef Google Scholar

    [3] Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020). doi: 10.1039/D0NR03446K

    CrossRef Google Scholar

    [4] Guo JJ, Zhou BQ, Yang CX, Dai QH, Kong LJ. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt Lett 44, 5747–5750 (2019). doi: 10.1364/OL.44.005747

    CrossRef Google Scholar

    [5] Ramuz M, Tee BCK, Tok JBH, Bao ZN. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24, 3223–3227 (2012). doi: 10.1002/adma.201200523

    CrossRef Google Scholar

    [6] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin‐like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [7] Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021).

    Google Scholar

    [8] Koo JH, Jeong S, Shim HJ, Son D, Kim J et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017). doi: 10.1021/acsnano.7b04292

    CrossRef Google Scholar

    [9] Kim J, Shim HJ, Yang J, Choi MK, Kim DC et al. Ultrathin quantum dot display integrated with wearable electronics. Adv Mater 29, 1700217 (2017). doi: 10.1002/adma.201700217

    CrossRef Google Scholar

    [10] Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8, 494–499 (2009). doi: 10.1038/nmat2459

    CrossRef Google Scholar

    [11] Kim RH, Kim DH, Xia JL, Kim BH, Park SI et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9, 929–937 (2010). doi: 10.1038/nmat2879

    CrossRef Google Scholar

    [12] Li HC, Xu Y, Li XM, Chen Y, Jiang Y et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv Healthcare Mater 6, 1601013 (2017). doi: 10.1002/adhm.201601013

    CrossRef Google Scholar

    [13] Kim TH, Lee CS, Kim S, Hur J, Lee S et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 11, 5992–6003 (2017). doi: 10.1021/acsnano.7b01894

    CrossRef Google Scholar

    [14] Lee H, Jiang Z, Yokota T, Fukuda K, Park S et al. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater Sci Eng 146, 100631 (2021). doi: 10.1016/j.mser.2021.100631

    CrossRef Google Scholar

    [15] Song JK, Kim MS, Yoo S, Koo JH, Kim DH. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res 14, 2919–2937 (2021). doi: 10.1007/s12274-021-3447-3

    CrossRef Google Scholar

    [16] Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28, 1801834 (2018). doi: 10.1002/adfm.201801834

    CrossRef Google Scholar

    [17] Zhao J, Chi ZH, Yang Z, Chen XJ, Arnold MS et al. Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale 10, 5764–5792 (2018). doi: 10.1039/C7NR09472H

    CrossRef Google Scholar

    [18] Xu HH, Yin L, Liu C, Sheng X, Zhao N. Recent advances in biointegrated optoelectronic devices. Adv Mater 30, 1800156 (2018). doi: 10.1002/adma.201800156

    CrossRef Google Scholar

    [19] Kim MS, Lee GJ, Choi C, Kim MS, Lee M et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat Electron 3, 546–553 (2020). doi: 10.1038/s41928-020-0429-5

    CrossRef Google Scholar

    [20] Park SI, Brenner DS, Shin G, Morgan CD, Copits BA et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33, 1280–1286 (2015). doi: 10.1038/nbt.3415

    CrossRef Google Scholar

    [21] Song YM, Xie YZ, Malyarchuk V, Xiao JL, Jung I et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). doi: 10.1038/nature12083

    CrossRef Google Scholar

    [22] Yin D, Feng J, Ma R, Liu YF, Zhang YL et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat Commun 7, 11573 (2016). doi: 10.1038/ncomms11573

    CrossRef Google Scholar

    [23] Haider G, Wang YH, Sonia FJ, Chiang CW, Frank O et al. Rippled metallic-nanowire/graphene/semiconductor nanostack for a gate-tunable ultrahigh-performance stretchable phototransistor. Adv Opt Mater 8, 2000859 (2020). doi: 10.1002/adom.202000859

    CrossRef Google Scholar

    [24] Kim M, Kang P, Leem J, Nam S. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058–4065 (2017). doi: 10.1039/C6NR09338H

    CrossRef Google Scholar

    [25] Lee J, Wu J, Shi MX, Yoon J, Park SI et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 23, 986–991 (2011). doi: 10.1002/adma.201003961

    CrossRef Google Scholar

    [26] Choi M, Jang B, Lee W, Lee S, Kim TW et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv Funct Mater 27, 1606005 (2017). doi: 10.1002/adfm.201606005

    CrossRef Google Scholar

    [27] Li L, Lin HT, Qiao ST, Huang YZ, Li JY et al. Monolithically integrated stretchable photonics. Light Sci Appl 7, 17138 (2018). doi: 10.1038/lsa.2017.138

    CrossRef Google Scholar

    [28] Biswas S, Shao YT, Hachisu T, Nguyen-Dang T, Visell Y. Integrated soft optoelectronics for wearable health monitoring. Adv Mater Technol 5, 2000347 (2020). doi: 10.1002/admt.202000347

    CrossRef Google Scholar

    [29] Ji BW, Ge CF, Guo ZJ, Wang LC, Wang MH et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens Bioelectron 153, 112009 (2020). doi: 10.1016/j.bios.2020.112009

    CrossRef Google Scholar

    [30] Koo JH, Song JK, Yoo S, Sunwoo SH, Son D et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv Mater Technol 5, 2000407 (2020). doi: 10.1002/admt.202000407

    CrossRef Google Scholar

    [31] Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28, 4203–4218 (2016). doi: 10.1002/adma.201504150

    CrossRef Google Scholar

    [32] Chen ZY, Obaid SN, Lu LY. Recent advances in organic optoelectronic devices for biomedical applications. Opt Mater Express 9, 3843–3856 (2019). doi: 10.1364/OME.9.003843

    CrossRef Google Scholar

    [33] Sheng X, Gao L, Song YM, Tao H, Yun SH. Bio-inspired and bio-integrated photonic materials and devices: feature issue introduction. Opt Mater Express 10, 155–156 (2020). doi: 10.1364/OME.385739

    CrossRef Google Scholar

    [34] Nguyen NK, Nguyen T, Nguyen TK, Yadav S, Dinh T et al. Wide-band-gap semiconductors for biointegrated electronics: recent advances and future directions. ACS Appl Electron Mater 3, 1959–1981 (2021). doi: 10.1021/acsaelm.0c01122

    CrossRef Google Scholar

    [35] Lee W, Yun H, Song JK, Sunwoo SH, Kim DH. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc Mater Res 2, 266–281 (2021). doi: 10.1021/accountsmr.1c00020

    CrossRef Google Scholar

    [36] Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 32, 1902743 (2020). doi: 10.1002/adma.201902743

    CrossRef Google Scholar

    [37] Song JK, Do K, Koo JH, Son D, Kim DH. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull 44, 643–656 (2019). doi: 10.1557/mrs.2019.183

    CrossRef Google Scholar

    [38] Ahn JH, Je JH. Stretchable electronics: Materials, architectures and integrations. J Phys D Appl Phys 45, 103001 (2012). doi: 10.1088/0022-3727/45/10/103001

    CrossRef Google Scholar

    [39] Wang CF, Wang CH, Huang ZL, Xu S. Materials and structures toward soft electronics. Adv Mater 30, 1801368 (2018). doi: 10.1002/adma.201801368

    CrossRef Google Scholar

    [40] Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 16, 1906270 (2020). doi: 10.1002/smll.201906270

    CrossRef Google Scholar

    [41] Zhao Y, Yang WD, Tan YJ, Li S, Zeng XT et al. Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL Mater 7, 031508 (2019). doi: 10.1063/1.5083942

    CrossRef Google Scholar

    [42] Kim Y, Zhu J, Yeom B, Di Prima M, Su XL et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013). doi: 10.1038/nature12401

    CrossRef Google Scholar

    [43] Araby S, Meng QS, Zhang LQ, Zaman I, Majewski P et al. Elastomeric composites based on carbon nanomaterials. Nanotechnology 26, 112001 (2015). doi: 10.1088/0957-4484/26/11/112001

    CrossRef Google Scholar

    [44] Shashok ZS, Prokopchuk NR, Vishnevskii KV, Krauklis AV, Borisevich KO et al. Properties of elastomeric composites with functionalized carbon nanomaterial. J Eng Phys Thermophys 90, 336–343 (2017). doi: 10.1007/s10891-017-1572-3

    CrossRef Google Scholar

    [45] Frogley MD, Ravich D, Wagner HD. Mechanical properties of carbon nanoparticle-reinforced elastomers. Comp Sci Technol 63, 1647–1654 (2003). doi: 10.1016/S0266-3538(03)00066-6

    CrossRef Google Scholar

    [46] Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv Mater 31, 1806133 (2019). doi: 10.1002/adma.201806133

    CrossRef Google Scholar

    [47] Tee BCK, Ouyang JY. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater 30, 1802560 (2018). doi: 10.1002/adma.201802560

    CrossRef Google Scholar

    [48] Wang M, Baek P, Akbarinejad A, Barker D, Travas-Sejdic J. Conjugated polymers and composites for stretchable organic electronics. J Mater Chem C 7, 5534–5552 (2019). doi: 10.1039/C9TC00709A

    CrossRef Google Scholar

    [49] Huang S, Liu Y, Zhao Y, Ren ZF, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater 29, 1805924 (2019). doi: 10.1002/adfm.201805924

    CrossRef Google Scholar

    [50] Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent advances in transparent electronics with stretchable forms. Adv Mater 31, 1804690 (2019). doi: 10.1002/adma.201804690

    CrossRef Google Scholar

    [51] Kim T, Cho M, Yu KJ. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials 11, 1163 (2018). doi: 10.3390/ma11071163

    CrossRef Google Scholar

    [52] Hong S, Lee S, Kim DH. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc IEEE 107, 2185–2197 (2019). doi: 10.1109/JPROC.2019.2909666

    CrossRef Google Scholar

    [53] Jiang Z, Nayeem OG, Fukuda K, Ding S, Jin H et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 31, 1903446 (2019). doi: 10.1002/adma.201903446

    CrossRef Google Scholar

    [54] Matsuhisa N, Chen XD, Bao ZN, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 48, 2946–2966 (2019). doi: 10.1039/C8CS00814K

    CrossRef Google Scholar

    [55] Yang CH, Suo ZG. Hydrogel ionotronics. Nat Rev Mater 3, 125–142 (2018). doi: 10.1038/s41578-018-0018-7

    CrossRef Google Scholar

    [56] Veerapandian S, Jang W, Seol JB, Wang HB, Kong M et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 20, 533–540 (2021). doi: 10.1038/s41563-020-00863-7

    CrossRef Google Scholar

    [57] Noh J, Kim GU, Han S, Oh SJ, Jeon Y et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett 6, 2512–2518 (2021). doi: 10.1021/acsenergylett.1c00829

    CrossRef Google Scholar

    [58] Ruh D, Reith P, Sherman S, Theodor M, Ruhhammer J et al. Stretchable optoelectronic circuits embedded in a polymer network. Adv Mater 26, 1706–1710 (2014). doi: 10.1002/adma.201304447

    CrossRef Google Scholar

    [59] Chen JY, Hsieh HC, Chiu YC, Lee WY, Hung CC et al. Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. J Mater Chem C 8, 873–882 (2020). doi: 10.1039/C9TC05075B

    CrossRef Google Scholar

    [60] Chen YT, Carmichael RS, Carmichael TB. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl Mater Interfaces 11, 31210–31219 (2019). doi: 10.1021/acsami.9b11149

    CrossRef Google Scholar

    [61] Liu HS, Pan BC, Liou GS. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9, 2633–2639 (2017). doi: 10.1039/C6NR09220A

    CrossRef Google Scholar

    [62] Zhou YL, Zhao CS, Wang JC, Li YZ, Li CX et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater Lett 1, 511–518 (2019). doi: 10.1021/acsmaterialslett.9b00376

    CrossRef Google Scholar

    [63] Yu Q, Huang HW, Peng XS, Ye ZZ. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement. Nanoscale 3, 3868–3875 (2011). doi: 10.1039/c1nr10578g

    CrossRef Google Scholar

    [64] Pereira LFC, Rocha CG, Latgé A, Ferreira MS. A computationally efficient method for calculating the maximum conductance of disordered networks: application to one-dimensional conductors. J Appl Phys 108, 103720 (2010). doi: 10.1063/1.3514007

    CrossRef Google Scholar

    [65] Wang H, Yang WJ, Li KB, Li GH. The hydrothermal synthesis of ultra-high aspect ratio Ag nanoflakes and their performance as conductive fillers in heaters and pastes. RSC Adv 8, 8937–8943 (2018). doi: 10.1039/C7RA11937B

    CrossRef Google Scholar

    [66] Zappielo CD, Nanicuacua DM, Dos Santos WNL, Da Silva DLF, Dall’Antônia LH et al. Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J Braz Chem Soc 27, 1715–1726 (2016). doi: 10.5935/0103-5053.20160052

    CrossRef Google Scholar

    [67] Parangusan H, Ponnamma D, Hassan MK, Adham S, Al-Maadeed MAA. Designing carbon nanotube-based oil absorbing membranes from gamma irradiated and electrospun polystyrene nanocomposites. Materials 12, 709 (2019). doi: 10.3390/ma12050709

    CrossRef Google Scholar

    [68] Kellici S, Acord J, Ball J, Reehal HS, Morgan D et al. A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Adv 4, 14858–14861 (2014). doi: 10.1039/c3ra47573e

    CrossRef Google Scholar

    [69] Koo JH, Song JK, Kim DH. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019). doi: 10.1088/1361-6528/aafbbe

    CrossRef Google Scholar

    [70] O’Connell MJ, Eibergen EE, Doorn SK. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater 4, 412–418 (2005). doi: 10.1038/nmat1367

    CrossRef Google Scholar

    [71] Shayegh S, Bioki HA, Zarandi MB, Samani NK, Rahnamanic A. ZnS nanoparticles incorporated in polyaniline composite: preparation and optical characterization. Polym Sci Ser B 59, 616–623 (2017). doi: 10.1134/S1560090417050104

    CrossRef Google Scholar

    [72] Jun S, Choi KW, Kim KS, Kim DU, Lee CJ et al. Stretchable photodetector utilizing the change in capacitance formed in a composite film containing semiconductor particles. Comp Sci Technol 182, 107773 (2019). doi: 10.1016/j.compscitech.2019.107773

    CrossRef Google Scholar

    [73] Choi SB, Lee CJ, Han CJ, Kang JW, Lee CR et al. Self-healable capacitive photodetectors with stretchability based on composite of ZnS: Cu particles and reversibly crosslinkable silicone elastomer. Adv Mater Technol 5, 2000327 (2020). doi: 10.1002/admt.202000327

    CrossRef Google Scholar

    [74] Tai CL, Hong WL, Kuo YT, Chang CY, Niu MC et al. Ultrastable, deformable, and stretchable luminescent organic-inorganic perovskite nanocrystal-polymer composites for 3D printing and white light-emitting diodes. ACS Appl Mater Interfaces 11, 30176–30184 (2019). doi: 10.1021/acsami.9b06248

    CrossRef Google Scholar

    [75] Xuan TT, Huang JJ, Liu H, Lou SQ, Cao LY et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem Mater 31, 1042–1047 (2019). doi: 10.1021/acs.chemmater.8b04596

    CrossRef Google Scholar

    [76] Wu ZW, Li P, Zhang YK, Zheng ZJ. Flexible and stretchable perovskite solar cells: device design and development methods. Small Methods 2, 1800031 (2018).

    Google Scholar

    [77] Kong LQ, Zhang L, Meng ZH, Xu C, Lin NB et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology 29, 315203 (2018). doi: 10.1088/1361-6528/aac39c

    CrossRef Google Scholar

    [78] Weaver J, Zakeri R, Aouadi S, Kohli P. Synthesis and characterization of quantum dot–polymer composites. J Mater Chem 19, 3198–3206 (2009). doi: 10.1039/b820204d

    CrossRef Google Scholar

    [79] Jeong SM, Song S, Kim H, Baek SH, Kwak JS. Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer. RSC Adv 7, 8816–8822 (2017). doi: 10.1039/C7RA00195A

    CrossRef Google Scholar

    [80] Xu XJ, Hu LF, Gao N, Liu SX, Wageh S et al. Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv Funct Mater 25, 445–454 (2015). doi: 10.1002/adfm.201403065

    CrossRef Google Scholar

    [81] Liu M, Zhong GH, Yin YM, Miao JS, Li K et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci 4, 1700335 (2017). doi: 10.1002/advs.201700335

    CrossRef Google Scholar

    [82] Shu YF, Lin X, Qin HY, Hu Z, Jin YZ et al. Quantum dots for display applications. Angew Chem Int Ed 59, 22312–22323 (2020). doi: 10.1002/anie.202004857

    CrossRef Google Scholar

    [83] Kim DC, Yun H, Kim J, Seung H, Yu WS et al. Three-dimensional foldable quantum dot light-emitting diodes. Nat Electron 4, 671–680 (2021). doi: 10.1038/s41928-021-00643-4

    CrossRef Google Scholar

    [84] Choi MK, Yang J, Kim DC, Dai ZH, Kim J et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv Mater 30, 1703279 (2018). doi: 10.1002/adma.201703279

    CrossRef Google Scholar

    [85] Ashizawa M, Zheng Y, Tran H, Bao ZN. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog Polymer Sci 100, 101181 (2020). doi: 10.1016/j.progpolymsci.2019.101181

    CrossRef Google Scholar

    [86] Choi D, Kim H, Persson N, Chu PH, Chang M et al. Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem Mater 28, 1196–1204 (2016). doi: 10.1021/acs.chemmater.5b04804

    CrossRef Google Scholar

    [87] Kim HJ, Sim K, Thukral A, Yu CJ. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv 3, e1701114 (2017). doi: 10.1126/sciadv.1701114

    CrossRef Google Scholar

    [88] Wang ZY, Wang T, Zhuang MD, Xu HX. Stretchable polymer composite with a 3D segregated structure of PEDOT: PSS for multifunctional touchless sensing. ACS Appl Mater Interfaces 11, 45301–45309 (2019). doi: 10.1021/acsami.9b16353

    CrossRef Google Scholar

    [89] Luo RB, Li HB, Du BS, Zhou SS, Zhu YX. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Organ Electron 76, 105451 (2020). doi: 10.1016/j.orgel.2019.105451

    CrossRef Google Scholar

    [90] Luan YG, Noh JS, Kim SH. Facile control of stretchability and electrical resistance of elastomer/polyaniline composites for stretchable conductors. Mater Chem Phys 190, 68–73 (2017). doi: 10.1016/j.matchemphys.2017.01.006

    CrossRef Google Scholar

    [91] Wang T, Zhang Y, Liu QC, Cheng W, Wang XR et al. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv Funct Mater 28, 1705551 (2018). doi: 10.1002/adfm.201705551

    CrossRef Google Scholar

    [92] Kurian AS, Souri H, Mohan VB, Bhattacharyya D. Highly stretchable strain sensors based on polypyrrole-silicone rubber composites for human motion detection. Sens Actuators A Phys 312, 112131 (2020). doi: 10.1016/j.sna.2020.112131

    CrossRef Google Scholar

    [93] Li MF, Li HY, Zhong WB, Zhao QH, Wang D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6, 1313–1319 (2014). doi: 10.1021/am4053305

    CrossRef Google Scholar

    [94] Wang GJN, Gasperini A, Bao ZN. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater 4, 1700429 (2018). doi: 10.1002/aelm.201700429

    CrossRef Google Scholar

    [95] Rodriquez D, Kim JH, Root SE, Fei ZP, Boufflet P et al. Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics. ACS Appl Mater Interfaces 9, 8855–8862 (2017). doi: 10.1021/acsami.6b16115

    CrossRef Google Scholar

    [96] Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). doi: 10.1038/nature20102

    CrossRef Google Scholar

    [97] Ocheje MU, Charron BP, Nyayachavadi A, Rondeau-Gagne S. Stretchable electronics: recent progress in the preparation of stretchable and self-healing semiconducting conjugated polymers. Flex Print Electron 2, 043002 (2017). doi: 10.1088/2058-8585/aa9c9b

    CrossRef Google Scholar

    [98] Trung TQ, Lee NE. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 29, 1603167 (2017). doi: 10.1002/adma.201603167

    CrossRef Google Scholar

    [99] Shim HJ, Sunwoo SH, Kim Y, Koo JH, Kim DH. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv Healthcare Mater 10, 2002105 (2021). doi: 10.1002/adhm.202002105

    CrossRef Google Scholar

    [100] Kim Y, Park C, Im S, Kim JH. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices. Sci Rep 10, 16488 (2020). doi: 10.1038/s41598-020-73259-x

    CrossRef Google Scholar

    [101] Lian F, Wang CX, Wu Q, Yang MH, Wang ZY et al. In situ synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Adv 10, 1281–1286 (2020). doi: 10.1039/C9RA06729A

    CrossRef Google Scholar

    [102] Wang ZG, Chen BK, Zhu MS, Kershaw SV, Zhi CY et al. Stretchable and thermally stable dual emission composite films of on-purpose aggregated copper nanoclusters in carboxylated polyurethane for remote white light-emitting devices. ACS Appl Mater Interfaces 8, 33993–33998 (2016). doi: 10.1021/acsami.6b10828

    CrossRef Google Scholar

    [103] Jiang DH, Liao YC, Cho CJ, Veeramuthu L, Liang FC et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Appl Mater Interfaces 12, 14408–14415 (2020). doi: 10.1021/acsami.9b23291

    CrossRef Google Scholar

    [104] Costa P, Maceiras A, Sebastian MS, García-Astrain C, Vilas JL et al. On the use of surfactants for improving nanofiller dispersion and piezoresistive response in stretchable polymer composites. J Mater Chem C 6, 10580–10588 (2018). doi: 10.1039/C8TC03829E

    CrossRef Google Scholar

    [105] Savagatrup S, Chan E, Renteria-Garcia SM, Printz AD, Zaretski AV et al. Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater 25, 427–436 (2015). doi: 10.1002/adfm.201401758

    CrossRef Google Scholar

    [106] Fan X, Nie WY, Tsai H, Wang NX, Huang HH et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci 6, 1900813 (2019). doi: 10.1002/advs.201900813

    CrossRef Google Scholar

    [107] Tsai JH, Lai YC, Higashihara T, Lin CJ, Ueda M et al. Enhancement of P3HT/PCBM photovoltaic efficiency using the surfactant of triblock copolymer containing poly(3-hexylthiophene) and poly(4-vinyltriphenylamine) segments. Macromolecules 43, 6085–6091 (2010). doi: 10.1021/ma1011182

    CrossRef Google Scholar

    [108] Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 7, eabd9715 (2021). doi: 10.1126/sciadv.abd9715

    CrossRef Google Scholar

    [109] Shi H, Liu CC, Jiang QL, Xu JK. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater 1, 1500017 (2015). doi: 10.1002/aelm.201500017

    CrossRef Google Scholar

    [110] Lim C, Shin Y, Jung J, Kim JH, Lee S et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 7, 031502 (2019). doi: 10.1063/1.5063657

    CrossRef Google Scholar

    [111] Choi S, Han SI, Jung D, Hwang HJ, Lim C et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol 13, 1048–1056 (2018). doi: 10.1038/s41565-018-0226-8

    CrossRef Google Scholar

    [112] Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF et al. High-density stretchable electrode grids for chronic neural recording. Adv Mater 30, 1706520 (2018). doi: 10.1002/adma.201706520

    CrossRef Google Scholar

    [113] Lee S, Shin S, Lee S, Seo J, Lee J et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater 25, 3114–3121 (2015). doi: 10.1002/adfm.201500628

    CrossRef Google Scholar

    [114] Catenacci MJ, Reyes C, Cruz MA, Wiley BJ. Stretchable conductive composites from Cu-Ag nanowire felt. ACS Nano 12, 3689–3698 (2018). doi: 10.1021/acsnano.8b00887

    CrossRef Google Scholar

    [115] Kim I, Woo K, Zhong ZY, Ko P, Jang Y et al. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale 10, 7890–7897 (2018). doi: 10.1039/C7NR09421C

    CrossRef Google Scholar

    [116] Li Z, Le TR, Wu ZK, Yao YG, Li LY et al. Rational design of a printable, highly conductive silicone-based electrically conductive adhesive for stretchable radio-frequency antennas. Adv Funct Mater 25, 464–470 (2015). doi: 10.1002/adfm.201403275

    CrossRef Google Scholar

    [117] Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater 16, 834–840 (2017). doi: 10.1038/nmat4904

    CrossRef Google Scholar

    [118] Wang JX, Cai GF, Li SH, Gao DC, Xiong JQ et al. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv Mater 30, 1706157 (2018). doi: 10.1002/adma.201706157

    CrossRef Google Scholar

    [119] Kim SH, Jung S, Yoon IS, Lee C, Oh Y et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv Mater 30, 1800109 (2018). doi: 10.1002/adma.201800109

    CrossRef Google Scholar

    [120] Oh Y, Yoon IS, Lee C, Kim SH, Ju BK et al. Selective photonic sintering of Ag flakes embedded in silicone elastomers to fabricate stretchable conductors. J Mater Chem C 5, 11733–11740 (2017). doi: 10.1039/C7TC03828C

    CrossRef Google Scholar

    [121] Bhagavatheswaran ES, Parsekar M, Das A, Le HH, Wiessner S et al. Construction of an interconnected nanostructured carbon black network: development of highly stretchable and robust elastomeric conductors. J Phys Chem C 119, 21723–21731 (2015). doi: 10.1021/acs.jpcc.5b06629

    CrossRef Google Scholar

    [122] Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008). doi: 10.1126/science.1160309

    CrossRef Google Scholar

    [123] Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10, 424–428 (2011). doi: 10.1038/nmat3001

    CrossRef Google Scholar

    [124] Kim T, Park J, Sohn J, Cho D, Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016). doi: 10.1021/acsnano.6b01355

    CrossRef Google Scholar

    [125] Wang Y, Zhu CX, Pfattner R, Yan HP, Jin LH et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 3, e1602076 (2017). doi: 10.1126/sciadv.1602076

    CrossRef Google Scholar

    [126] Ameri SK, Ho R, Jang H, Tao L, Wang YH et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017). doi: 10.1021/acsnano.7b02182

    CrossRef Google Scholar

    [127] Zhang L, Kumar KS, He H, Cai CJ, He X et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun 11, 4683 (2020). doi: 10.1038/s41467-020-18503-8

    CrossRef Google Scholar

    [128] Feig VR, Tran H, Lee M, Bao ZN. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 9, 2740 (2018). doi: 10.1038/s41467-018-05222-4

    CrossRef Google Scholar

    [129] Choong CL, Shim MB, Lee BS, Jeon S, Ko DS et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26, 3451–3458 (2014). doi: 10.1002/adma.201305182

    CrossRef Google Scholar

    [130] Lu Y, Liu ZQ, Yan HM, Peng Q, Wang RG et al. Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability. ACS Appl Mater Interfaces 11, 20453–20464 (2019). doi: 10.1021/acsami.9b05464

    CrossRef Google Scholar

    [131] Seol YG, Trung TQ, Yoon OJ, Sohn IY, Lee NE. Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J Mater Chem 22, 23759–23766 (2012). doi: 10.1039/c2jm33949h

    CrossRef Google Scholar

    [132] Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K et al. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthcare Mater 3, 1919–1927 (2014). doi: 10.1002/adhm.201400209

    CrossRef Google Scholar

    [133] Zhu CX, Chortos A, Wang Y, Pfattner R, Lei T, Hinckley AC et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat Electron 1, 183–190 (2018). doi: 10.1038/s41928-018-0041-0

    CrossRef Google Scholar

    [134] Wang GJN, Zheng Y, Zhang S, Kang J, Wu HC et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater 31, 6465–6475 (2019). doi: 10.1021/acs.chemmater.8b04314

    CrossRef Google Scholar

    [135] Savagatrup S, Printz AD, Wu HS, Rajan KM, Sawyer EJ et al. Viability of stretchable poly(3-heptylthiophene) (P3HpT) for organic solar cells and field-effect transistors. Synth Met 203, 208–214 (2015). doi: 10.1016/j.synthmet.2015.02.031

    CrossRef Google Scholar

    [136] Peng R, Pang B, Hu DQ, Chen MJ, Zhang GB et al. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J Mater Chem C 3, 3599–3606 (2015). doi: 10.1039/C4TC02476A

    CrossRef Google Scholar

    [137] Lu C, Lee WY, Gu XD, Xu J, Chou HH et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene-diketopyrrolopyrrole) polymers. Adv Electron Mater 3, 1600311 (2017). doi: 10.1002/aelm.201600311

    CrossRef Google Scholar

    [138] Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater 17, 2674–2679 (2007). doi: 10.1002/adfm.200601248

    CrossRef Google Scholar

    [139] Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv Funct Mater 28, 1804222 (2018). doi: 10.1002/adfm.201804222

    CrossRef Google Scholar

    [140] Wang GJN, Shaw L, Xu J, Kurosawa T, Schroeder BC et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Funct Mater 26, 7254–7262 (2016). doi: 10.1002/adfm.201602603

    CrossRef Google Scholar

    [141] Shin M, Oh JY, Byun KE, Lee YJ, Kim B et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv Mater 27, 1255–1261 (2015). doi: 10.1002/adma.201404602

    CrossRef Google Scholar

    [142] Song E, Kang B, Choi HH, Sin DH, Lee H et al. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv Electron Mater 2, 1500250 (2016). doi: 10.1002/aelm.201500250

    CrossRef Google Scholar

    [143] Xu J, Wang SH, Wang GJN, Zhu CX, Luo SC et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017). doi: 10.1126/science.aah4496

    CrossRef Google Scholar

    [144] Wang SH, Xu J, Wang WC, Wang GJN, Rastak R et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). doi: 10.1038/nature25494

    CrossRef Google Scholar

    [145] Sun TL, Scott JI, Wang M, Kline RJ, Bazan GC et al. Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater 3, 1600388 (2017). doi: 10.1002/aelm.201600388

    CrossRef Google Scholar

    [146] Kim HJ, Thukral A, Sharma S, Yu CJ. Biaxially stretchable fully elastic transistors Based on rubbery semiconductor nanocomposites. Adv Mater Technol 3, 1800043 (2018). doi: 10.1002/admt.201800043

    CrossRef Google Scholar

    [147] Sim K, Rao Z, Kim HJ, Thukral A, Shim H et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci Adv 5, eaav5749 (2019). doi: 10.1126/sciadv.aav5749

    CrossRef Google Scholar

    [148] Zhang GY, McBride M, Persson N, Lee S, Dunn TJ et al. Versatile interpenetrating polymer network approach to robust stretchable electronic devices. Chem Mater 29, 7645–7652 (2017). doi: 10.1021/acs.chemmater.7b03019

    CrossRef Google Scholar

    [149] Zheng Y, Wang GJN, Kang J, Nikolka M, Wu HC et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv Funct Mater 29, 1905340 (2019). doi: 10.1002/adfm.201905340

    CrossRef Google Scholar

    [150] Roh E, Hwang BU, Kim D, Kim BY, Lee NE. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9, 6252–6261 (2015). doi: 10.1021/acsnano.5b01613

    CrossRef Google Scholar

    [151] Wang JX, Yan CY, Chee KJ, Lee PS. Highly stretchable and self-deformable alternating current electroluminescent devices. Adv Mater 27, 2876–2882 (2015). doi: 10.1002/adma.201405486

    CrossRef Google Scholar

    [152] Bade SGR, Shan X, Hoang PT, Li JQ, Geske T et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater 29, 1607053 (2017). doi: 10.1002/adma.201607053

    CrossRef Google Scholar

    [153] Fernandes DF, Majidi C, Tavakoli M. Digitally printed stretchable electronics: a review. J Mater Chem C 7, 14035–14068 (2019). doi: 10.1039/C9TC04246F

    CrossRef Google Scholar

    [154] Larmagnac A, Eggenberger S, Janossy H, Vörös J. Stretchable electronics based on Ag-PDMS composites. Sci Rep 4, 7254 (2014). doi: 10.1038/srep07254

    CrossRef Google Scholar

    [155] Kim TH, Carlson A, Ahn JH, Won SM, Wang SD et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl Phys Lett 94, 113502 (2009). doi: 10.1063/1.3099052

    CrossRef Google Scholar

    [156] Al-Halhouli A, Qitouqa H, Alashqar A, Abu-Khalaf J. Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sens Rev 38, 438–452 (2018). doi: 10.1108/SR-07-2017-0126

    CrossRef Google Scholar

    [157] Zhao WY, Wang ZY, Zhang JP, Wang XP, Xu YT et al. Vat photopolymerization 3D printing of advanced soft sensors and actuators: from architecture to function. Adv Mater Technol 6, 2001218 (2021). doi: 10.1002/admt.202001218

    CrossRef Google Scholar

    [158] Wang ZY, Gao WL, Zhang Q, Zheng KQ, Xu JW et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors. ACS Appl Mater Interfaces 11, 1344–1352 (2019). doi: 10.1021/acsami.8b16139

    CrossRef Google Scholar

    [159] Mizzi L, Salvati E, Spaggiari A, Tan JC, Korsunsky AM. Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167, 105242 (2020). doi: 10.1016/j.ijmecsci.2019.105242

    CrossRef Google Scholar

    [160] Yao SS, Yang J, Poblete FR, Hu XG, Zhu Y. Multifunctional electronic textiles using silver nanowire composites. ACS Appl Mater Interfaces 11, 31028–31037 (2019). doi: 10.1021/acsami.9b07520

    CrossRef Google Scholar

    [161] Zambrano BL, Renz AF, Ruff T, Lienemann S, Tybrandt K et al. Soft electronics based on stretchable and conductive nanocomposites for biomedical applications. Adv Healthcare Mater 10, 2001397 (2021). doi: 10.1002/adhm.202001397

    CrossRef Google Scholar

    [162] Ko Y, Kim J, Kim D, Yamauchi Y, Kim JH et al. A simple silver nanowire patterning method based on poly(ethylene glycol) photolithography and its application for soft electronics. Sci Rep 7, 2282 (2017). doi: 10.1038/s41598-017-02511-8

    CrossRef Google Scholar

    [163] Zhou HY, Park J, Lee Y, Park JM, Kim JH et al. Water passivation of perovskite nanocrystals enables air-stable intrinsically stretchable color-conversion layers for stretchable displays. Adv Mater 32, 2001989 (2020). doi: 10.1002/adma.202001989

    CrossRef Google Scholar

    [164] Kim T, Kim JH, Kang TE, Lee C, Kang H et al. Flexible, highly efficient all-polymer solar cells. Nat Commun 6, 8547 (2015). doi: 10.1038/ncomms9547

    CrossRef Google Scholar

    [165] Wang ZY, Xu MC, Li ZL, Gao YR, Yang LP et al. Intrinsically stretchable organic solar cells beyond 10% power conversion efficiency enabled by transfer printing method. Adv Funct Mater 31, 2103534 (2021). doi: 10.1002/adfm.202103534

    CrossRef Google Scholar

    [166] Hsieh YT, Chen JY, Fukuta S, Lin PC, Higashihara T et al. Realization of intrinsically stretchable organic solar cells enabled by charge-extraction layer and photoactive material engineering. ACS Appl Mater Interfaces 10, 21712–21720 (2018). doi: 10.1021/acsami.8b04582

    CrossRef Google Scholar

    [167] Matsuhisa N, Niu SM, O’Neill SJK, Kang J, Ochiai Y et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021). doi: 10.1038/s41586-021-04053-6

    CrossRef Google Scholar

    [168] Yu ZB, Niu XF, Liu ZT, Pei QB. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater 23, 3989–3994 (2011). doi: 10.1002/adma.201101986

    CrossRef Google Scholar

    [169] Wang RR, Zhai HT, Wang T, Wang X, Cheng Y et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res 9, 2138–2148 (2016). doi: 10.1007/s12274-016-1103-0

    CrossRef Google Scholar

    [170] Dauzon E, Lin YB, Faber H, Yengel E, Sallenave X et al. Stretchable and transparent conductive PEDOT: PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv Funct Mater 30, 2001251 (2020). doi: 10.1002/adfm.202001251

    CrossRef Google Scholar

    [171] Forrest S R, Thompson ME. Introduction: organic electronics and optoelectronics. Chem Rev 107, 923–925 (2007). doi: 10.1021/cr0501590

    CrossRef Google Scholar

    [172] Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [173] Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Organic light detectors: photodiodes and phototransistors. Adv Mater 25, 4267–4295 (2013). doi: 10.1002/adma.201204979

    CrossRef Google Scholar

    [174] Liang JJ, Li L, Niu XF, Yu ZB, Pei QB. Elastomeric polymer light-emitting devices and displays. Nat Photonics 7, 817–824 (2013). doi: 10.1038/nphoton.2013.242

    CrossRef Google Scholar

    [175] Larson C, Peele B, Li S, Robinson S, Totaro M et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). doi: 10.1126/science.aac5082

    CrossRef Google Scholar

    [176] Liang JJ, Li L, Tong K, Ren Z, Hu W et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014). doi: 10.1021/nn405887k

    CrossRef Google Scholar

    [177] Jao CC, Chang JR, Ya CY, Chen WC, Cho CJ et al. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym Int 70, 426–431 (2021). doi: 10.1002/pi.6023

    CrossRef Google Scholar

    [178] Wang JX, Yan CY, Kang WB, Lee PS. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 6, 10734–10739 (2014). doi: 10.1039/C4NR02462A

    CrossRef Google Scholar

    [179] Yan CY, Wang JX, Wang X, Kang WB, Cui MQ et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater 26, 943–950 (2014). doi: 10.1002/adma.201304226

    CrossRef Google Scholar

    [180] Liu K, Bian YS, Kuang JH, Huang X, Li Y et al. Ultrahigh-performance optoelectronic skin based on intrinsically stretchable perovskite-polymer heterojunction transistors. Adv Mater 34, 2107304 (2022). doi: 10.1002/adma.202107304

    CrossRef Google Scholar

    [181] Li L, Liang JJ, Gao HE, Li Y, Niu XF et al. A solid-state intrinsically stretchable polymer solar cell. ACS Appl Mater Interfaces 9, 40523–40532 (2017). doi: 10.1021/acsami.7b12908

    CrossRef Google Scholar

    [182] Shin H, Sharma BK, Lee SW, Lee JB, Choi M et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl Mater Interfaces 11, 14222–14228 (2019). doi: 10.1021/acsami.8b22135

    CrossRef Google Scholar

    [183] Son D, Kang J, Vardoulis O, Kim Y, Matsuhisa N et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 13, 1057–1065 (2018). doi: 10.1038/s41565-018-0244-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(13489) PDF downloads(1753) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint