Yuan XL, Darcie T, Wei ZY, Aitchison JS. Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electron Adv 5, 210130 (2022). doi: 10.29026/oea.2022.210130
Citation: Yuan XL, Darcie T, Wei ZY, Aitchison JS. Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electron Adv 5, 210130 (2022). doi: 10.29026/oea.2022.210130

Review Open Access

Microchip imaging cytometer: making healthcare available, accessible, and affordable

More Information
  • The Microchip Imaging Cytometer (MIC) is a class of integrated point-of-care detection systems based on the combination of optical microscopy and flow cytometry. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings. Based on the use of microfluidic chips, MIC requires less sample and can complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings. In this article, we review recent developments of the Microchip Imaging Cytometer from the following aspects: clinical applications, microfluidic chip integration, imaging optics, and image acquisition. Following, we provide an outlook of the field and remark on promising technologies that may enable significant progress in the near future.
  • 加载中
  • [1] Noor A M, Masuda T, Lei W, Horio K, Miyata Y et al. A microfluidic chip for capturing, imaging and counting CD3+ T-lymphocytes and CD19+ B-lymphocytes from whole blood. Sens Actuators B Chem 276, 107–113 (2018). doi: 10.1016/j.snb.2018.08.063

    CrossRef Google Scholar

    [2] Ilyas S, Sher M, Du E, Asghar W. Smartphone-based sickle cell disease detection and monitoring for point-of-care settings. Biosens Bioelectron 165, 112417 (2020). doi: 10.1016/j.bios.2020.112417

    CrossRef Google Scholar

    [3] Lewandowski M E. The design, fabrication, and evaluation of mobile point-of-care systems for cellular imaging in microfluidic channels. (Case Western Reserve University, Cleveland, 2018).

    Google Scholar

    [4] Manoto SL, Lugongolo M, Govender U, Mthunzi-Kufa P. Point of care diagnostics for HIV in resource limited settings: an overview. Medicina 54, 3 (2018). doi: 10.3390/medicina54010003

    CrossRef Google Scholar

    [5] Sher M, Coleman B, Caputi M, Asghar W. Development of a point-of-care assay for HIV-1 viral load using higher refractive index antibody-coated microbeads. Sensors (Basel) 21, 1819 (2021). doi: 10.3390/s21051819

    CrossRef Google Scholar

    [6] Qiu XB, Yang S, Wu D, Wang D, Qiao S et al. Rapid enumeration of CD4+ T lymphocytes using an integrated microfluidic system based on Chemiluminescence image detection at point-of-care testing. Biomed Microdevices 20, 1–10 (2018). doi: 10.1007/s10544-017-0241-9

    CrossRef Google Scholar

    [7] Min J, Chin LK, Oh J, Landeros C, Vinegoni C et al. CytoPAN—Portable cellular analyses for rapid point-of-care cancer diagnosis. Sci Transl Med 12, eaaz9746 (2020). doi: 10.1126/scitranslmed.aaz9746

    CrossRef Google Scholar

    [8] Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M et al. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 117, 112–128 (2018). doi: 10.1016/j.bios.2018.05.050

    CrossRef Google Scholar

    [9] Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends Analyt Chem 91, 26–41 (2017). doi: 10.1016/j.trac.2017.04.001

    CrossRef Google Scholar

    [10] Ymeti A, Li X, Lunter B, Breukers C, Tibbe AGJ et al. A single platform image cytometer for resource‐poor settings to monitor disease progression in HIV infection. Cytometry Part A 71, 132–142 (2007).

    Google Scholar

    [11] Spijkerman R, Hesselink L, Hellebrekers P, Vrisekoop N, Hietbrink F et al. Automated flow cytometry enables high performance point-of-care analysis of leukocyte phenotypes. J Immunol Methods 474, 112646 (2019). doi: 10.1016/j.jim.2019.112646

    CrossRef Google Scholar

    [12] Kestens L, Mandy F. Thirty‐five years of CD4 T‐cell counting in HIV infection: From flow cytometry in the lab to point-of-care testing in the field. Cytometry Part B Clin Cytom 92, 437–444 (2017). doi: 10.1002/cyto.b.21400

    CrossRef Google Scholar

    [13] Knowlton S, Joshi A, Syrrist P, Coskun A F, Tasoglu S. 3D-printed smartphone-based point of care tool for fluorescence-and magnetophoresis-based cytometry. Lab Chip 17, 2839–2851 (2017). doi: 10.1039/C7LC00706J

    CrossRef Google Scholar

    [14] Hassan U, Ghonge T, Reddy B Jr, Patel M, Rappleye M et al. A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat Commun 8, 15949 (2017). doi: 10.1038/ncomms15949

    CrossRef Google Scholar

    [15] Shapiro HM, Perlmutter NG. Personal cytometers: slow flow or no flow. Cytometry Part A 69, 620–630 (2006).

    Google Scholar

    [16] Zhang S, Liu YY, Wang XF, Yang L, Li HS et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 13, 120 (2020). doi: 10.1186/s13045-020-00954-7

    CrossRef Google Scholar

    [17] Cossarizza A, De Biasi S, Guaraldi G, Girardis M, Mussini C et al. SARS-CoV-2, the virus that causes COVID-19: Cytometry and the new challenge for global health. Cytometry 97, 340–343 (2020). doi: 10.1002/cyto.a.24002

    CrossRef Google Scholar

    [18] Bransky A, Larsson A, Aardal E, Ben-Yosef Y, Christenson RH. A novel approach to hematology testing at the point of care. J Appl Lab Med 6, 532–542 (2021). doi: 10.1093/jalm/jfaa186

    CrossRef Google Scholar

    [19] Spijkerman R, Bongers SH, Bindels BJ, Tinnevelt GH, Giustarini G et al. Flow cytometric evaluation of the neutrophil compartment in COVID‐19 at hospital presentation: A normal response to an abnormal situation. J Leukoc Biol 109, 99–114 (2021). doi: 10.1002/JLB.5COVA0820-520RRR

    CrossRef Google Scholar

    [20] Larsen CH. The fragile environments of inexpensive CD4+ T‐cell enumeration in the least developed countries: Strategies for accessible support. Cytometry Part B Clin Cytom 74, S107–S116 (2008).

    Google Scholar

    [21] Janossy G, Shapiro H. Simplified cytometry for routine monitoring of infectious diseases. Cytometry Part B Clin Cytom 74, S6–S10 (2008).

    Google Scholar

    [22] Shapiro HM, Perlmutter NG. Killer applications: Toward affordable rapid cell‐based diagnostics for malaria and tuberculosis. Cytometry Part B Clin Cytom 74, S152–S164 (2008).

    Google Scholar

    [23] Marinucci F, Medina‐Moreno S, Paterniti AD, Wattleworth M, Redfield RR. Decentralization of CD4 testing in resource‐limited settings: 7 years of experience in six African countries. Cytometry Part A 79, 368–374 (2011).

    Google Scholar

    [24] Logan C, Givens M, Ives JT, Delaney M, Lochhead MJ et al. Performance evaluation of the MBio Diagnostics point-of-care CD4 counter. J Immunol Methods 387, 107–113 (2013). doi: 10.1016/j.jim.2012.10.002

    CrossRef Google Scholar

    [25] Mbopi-Kéou FX, Sagnia B, Ngogang J, Angwafo III FF, Colizzi V et al. Validation of a single-platform, volumetric, flow cytometry for CD4 T cell count monitoring in therapeutic mobile unit. J Transl Med 10, 22 (2012). doi: 10.1186/1479-5876-10-22

    CrossRef Google Scholar

    [26] Piyasena ME, Graves SW. The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14, 1044–1059 (2014). doi: 10.1039/C3LC51152A

    CrossRef Google Scholar

    [27] Spencer D, Caselli F, Bisegna P, Morgan H. High accuracy particle analysis using sheathless microfluidic impedance cytometry. Lab Chip 16, 2467–2473 (2016). doi: 10.1039/C6LC00339G

    CrossRef Google Scholar

    [28] Leary JF. Design of portable microfluidic cytometry devices for rapid medical diagnostics in the field. Proc SPIE 10881, 108810B (2019).

    Google Scholar

    [29] Vázquez RM, Trotta G, Paturzo M, Volpe A, Bernava G et al. Imaging cytometry in a plastic ultra-mobile system. Proc SPIE 10055, 100550H (2017).

    Google Scholar

    [30] Guo C, Liu XM, Kan XC, Zhang FL, Tan JB et al. Lensfree on-chip microscopy based on dual-plane phase retrieval. Opt Express 27, 35216–35229 (2019). doi: 10.1364/OE.27.035216

    CrossRef Google Scholar

    [31] Gong YL, Fan N, Yang X, Peng B, Jiang H. New advances in microfluidic flow cytometry. Electrophoresis 40, 1212–1229 (2019). doi: 10.1002/elps.201800298

    CrossRef Google Scholar

    [32] Lei C, Kobayashi H, Wu Y, Li M, Isozaki A et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 13, 1603–1631 (2018). doi: 10.1038/s41596-018-0008-7

    CrossRef Google Scholar

    [33] Rane AS, Rutkauskaite J, deMello A, Stavrakis S. High-throughput multi-parametric imaging flow cytometry. Chem 3, 588–602 (2017). doi: 10.1016/j.chempr.2017.08.005

    CrossRef Google Scholar

    [34] Kamentsky LA. Future directions for flow cytometry. J Histochem Cytochem 27, 1649–1654 (1979). doi: 10.1177/27.12.391998

    CrossRef Google Scholar

    [35] Cambier JL, Kay DB, Wheeless LL Jr. A multidimensional slit-scan flow system. J Histochem Cytochem 27, 321–324 (1979). doi: 10.1177/27.1.374595

    CrossRef Google Scholar

    [36] Kachel V, Benker G, Lichtnau K, Valet G, Glossner E. Fast imaging in flow: a means of combining flow-cytometry and image analysis. J Histochem Cytochem 27, 335–341 (1979). doi: 10.1177/27.1.374598

    CrossRef Google Scholar

    [37] Barteneva NS, Fasler-Kan E, Vorobjev IA. Imaging flow cytometry: coping with heterogeneity in biological systems. J Histochem Cytochem 60, 723–733 (2012). doi: 10.1369/0022155412453052

    CrossRef Google Scholar

    [38] Doan M, Vorobjev I, Rees P, Filby A, Wolkenhauer O et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol 36, 649–652 (2018). doi: 10.1016/j.tibtech.2017.12.008

    CrossRef Google Scholar

    [39] Stavrakis S, Holzner G, Choo J, DeMello A. High-throughput microfluidic imaging flow cytometry. Curr Opin Biotechnol 55, 36–43 (2019). doi: 10.1016/j.copbio.2018.08.002

    CrossRef Google Scholar

    [40] Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33, 692–705 (2015). doi: 10.1016/j.tibtech.2015.09.001

    CrossRef Google Scholar

    [41] Dincer C, Bruch R, Costa‐Rama E, Fernández‐Abedul MT, Merkoçi A et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31, 1806739 (2019).

    Google Scholar

    [42] Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing–xPOCT. Trends Biotechnol 35, 728–742 (2017). doi: 10.1016/j.tibtech.2017.03.013

    CrossRef Google Scholar

    [43] Rong Z, Wang Q, Sun NX, Jia XF, Wang KL et al. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 1055, 140–147 (2019). doi: 10.1016/j.aca.2018.12.043

    CrossRef Google Scholar

    [44] Liu JJ, Geng ZX, Fan ZY, Liu J, Chen HD. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens Bioelectron 132, 17–37 (2019). doi: 10.1016/j.bios.2019.01.068

    CrossRef Google Scholar

    [45] Xu DD, Huang XW, Guo JH, Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 110, 78–88 (2018). doi: 10.1016/j.bios.2018.03.018

    CrossRef Google Scholar

    [46] Lin BX, Yu Y, Cao YJ, Guo ML, Zhu DB et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron 100, 482–489 (2018). doi: 10.1016/j.bios.2017.09.028

    CrossRef Google Scholar

    [47] Zhang JJ, Shen Z, Xiang Y, Lu Y. Integration of solution-based assays onto lateral flow device for one-step quantitative point-of-care diagnostics using personal glucose meter. ACS Sens 1, 1091–1096 (2016). doi: 10.1021/acssensors.6b00270

    CrossRef Google Scholar

    [48] Hu J, Cui XY, Gong Y, Xu XY, Gao B et al. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnol Adv 34, 305–320 (2016). doi: 10.1016/j.biotechadv.2016.02.008

    CrossRef Google Scholar

    [49] Chen YT, Cheng N, Xu YC, Huang KL, Luo YB et al. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 81, 317–323 (2016). doi: 10.1016/j.bios.2016.03.006

    CrossRef Google Scholar

    [50] Gong Y, Zheng YM, Jin BR, You ML, Wang JY et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 201, 126–133 (2019). doi: 10.1016/j.talanta.2019.03.105

    CrossRef Google Scholar

    [51] Kim H, Chung DR, Kang M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 144, 2460–2466 (2019). doi: 10.1039/C8AN02295J

    CrossRef Google Scholar

    [52] Choi JR, Hu J, Gong Y, Feng SS, Abas WABW et al. An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst 141, 2930–2939 (2016). doi: 10.1039/C5AN02532J

    CrossRef Google Scholar

    [53] Li ZD, Bai YM, You ML, Hu J, Yao CY et al. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron 177, 112952 (2021). doi: 10.1016/j.bios.2020.112952

    CrossRef Google Scholar

    [54] Gou T, Hu JM, Wu WS, Ding X, Zhou SF et al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens Bioelectron 120, 144–152 (2018). doi: 10.1016/j.bios.2018.08.030

    CrossRef Google Scholar

    [55] Cao L, Guo XJ, Mao P, Ren YL, Li ZD et al. A Portable Digital Loop-Mediated Isothermal Amplification Platform Based on Microgel Array and Hand-Held Reader. ACS Sens 6, 3564–3574 (2021). doi: 10.1021/acssensors.1c00603

    CrossRef Google Scholar

    [56] Pai NP, Vadnais C, Denkinger C, Engel N, Pai M. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and middle-income countries. PLoS Med 9, e1001306 (2012). doi: 10.1371/journal.pmed.1001306

    CrossRef Google Scholar

    [57] Mahoney E, Kun J, Smieja M, Fang QY. Review-point-of-care urinalysis with emerging sensing and imaging technologies. J Electrochem Soc 167, 037518 (2019).

    Google Scholar

    [58] Olanrewaju AO, Ng A, DeCorwin-Martin P, Robillard A, Juncker D. Microfluidic capillaric circuit for rapid and facile bacteria detection. Anal Chem 89, 6846–6853 (2017). doi: 10.1021/acs.analchem.7b01315

    CrossRef Google Scholar

    [59] Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines (Basel) 7, 70 (2016). doi: 10.3390/mi7040070

    CrossRef Google Scholar

    [60] Dou JJ, Aitchison JS, Chen L, Nayyar R. Portable point-of-care blood analysis system for global health (Conference Presentation). Proc SPIE 9699, 96990M (2016).

    Google Scholar

    [61] Dou JJ. A miniaturized microfluidic cytometer platform for point-of-care blood testing applications. (University of Toronto, Toronto, 2017).

    Google Scholar

    [62] Dou J, Chen L, Nayyar R, Aitchison JS. A miniaturized particle detection system for HIV monitoring. In 2013 IEEE Photonics Conference 5–7 (IEEE, 2013);http://doi.org/10.1109/IPCon.2013.6656338.

    Google Scholar

    [63] Dou J, Chen L, Nayyar R, Aitchison S. A microfluidic based optical particle detection method. Proc SPIE 8229, 82290B (SPIE, 2012).

    Google Scholar

    [64] Yuan XL, Darcie T, McKendry JJD, Dawson MD, Strain MJ et al. LED Excitation of an Imaging Cytometer for Bead-based Immunoassay. IEEE Photon Technol Lett 33, 892–895 (2021). doi: 10.1109/LPT.2021.3070079

    CrossRef Google Scholar

    [65] Yuan XL, Garg S, De Haan K, Fellouse FA, Gopalsamy A et al. Bead-based multiplex detection of dengue biomarkers in a portable imaging device. Biomed Opt Express 11, 6154–6167 (2020). doi: 10.1364/BOE.403803

    CrossRef Google Scholar

    [66] Garg S, Yuan RX, Gopalsamy A, Fellouse FA, Sidhu SS et al. A multiplexed, point-of-care sensing for dengue In 2019 IEEE SENSORS 1–4 (IEEE, 2019);http://doi.org/10.1109/SENSORS43011.2019.8956616.

    Google Scholar

    [67] Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 9, eaai7863 (2017). doi: 10.1126/scitranslmed.aai7863

    CrossRef Google Scholar

    [68] Gordon P, Venancio VP, Mertens-Talcott SU, Coté GL. Portable bright-field, fluorescence, and cross-polarized microscope toward point-of-care imaging diagnostics. J Biomed Opt 24, 096502 (2019). doi: 10.1117/1.JBO.24.9.096502

    CrossRef Google Scholar

    [69] Zhu HY, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem 83, 6641–6647 (2011). doi: 10.1021/ac201587a

    CrossRef Google Scholar

    [70] Wei QS, McLeod E, Qi HF, Wan Z, Sun R et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci Rep 3, 1699 (2013). doi: 10.1038/srep01699

    CrossRef Google Scholar

    [71] De Haan K, Koydemir HC, Rivenson Y, Tseng D, Van Dyne E et al. Automated screening of sickle cells using a smartphone-based microscope and deep learning. NPJ Digit Med 3, 1–9 (2020). doi: 10.1038/s41746-019-0211-0

    CrossRef Google Scholar

    [72] Dekker S, Buesink W, Blom M, Alessio M, Verplanck N et al. Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens Actuators B Chem 272, 468–478 (2018). doi: 10.1016/j.snb.2018.04.005

    CrossRef Google Scholar

    [73] Fan YQ, Wang HL, Gao KX, Liu JJ, Chai DP et al. Applications of modular microfluidics technology. Chin J Anal Chem 46, 1863–1871 (2018). doi: 10.1016/S1872-2040(18)61126-0

    CrossRef Google Scholar

    [74] Lee TY, Han K, Barrett DO, Park S, Soper SA et al. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules. Sens Actuators B Chem 254, 1249–1258 (2018). doi: 10.1016/j.snb.2017.07.189

    CrossRef Google Scholar

    [75] Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med 7, 273re1 (2015). doi: 10.1126/scitranslmed.aaa0056

    CrossRef Google Scholar

    [76] Ghonge T, Koydemir HC, Valera E, Berger J, Garcia C et al. Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood. Analyst 144, 3925–3935 (2019). doi: 10.1039/C9AN00532C

    CrossRef Google Scholar

    [77] Poudineh M, Maikawa CL, Ma EY, Pan J, Mamerow D et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat Biomed Eng 5, 53–63 (2021). doi: 10.1038/s41551-020-00661-1

    CrossRef Google Scholar

    [78] Calero V, Garcia-Sanchez P, Honrado C, Ramos A, Morgan H. AC electrokinetic biased deterministic lateral displacement for tunable particle separation. Lab Chip 19, 1386–1396 (2019). doi: 10.1039/C8LC01416G

    CrossRef Google Scholar

    [79] Richards JR, Gaylor KA, Pilgrim AJ. Comparison of traditional otoscope to iPhone otoscope in the pediatric ED. Am J Emerg Med 33, 1089–1092 (2015). doi: 10.1016/j.ajem.2015.04.063

    CrossRef Google Scholar

    [80] Dunning K, Stothard JR. From the McArthur to the millennium health microscope (MHM): future developments in microscope miniaturization for international health. Micros Today 15, 18–21 (2007).

    Google Scholar

    [81] Jones D, Nyalwidhe J, Tetley L, Barrett MP. McArthur revisited: fluorescence microscopes for field diagnostics. Trends Parasitol 23, 468–469 (2007). doi: 10.1016/j.pt.2007.08.003

    CrossRef Google Scholar

    [82] Chen H, Li Z, Zhang LZ, Sawaya P, Shi JB et al. Quantitation of femtomolar‐level protein biomarkers using a simple microbubbling digital assay and bright‐field smartphone imaging. Angew Chem 131, 14060–14066 (2019). doi: 10.1002/ange.201906856

    CrossRef Google Scholar

    [83] Jagannadh VK, Adhikari JV, Gorthi SS. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer. Biomicrofluidics 9, 024123 (2015). doi: 10.1063/1.4919402

    CrossRef Google Scholar

    [84] Shcheslavskiy VI, Neubauer A, Bukowiecki R, Dinter F, Becker W. Combined fluorescence and phosphorescence lifetime imaging. Applied Physics Letters 108, 091111 (2016).

    Google Scholar

    [85] Huang L, Tian SL, Zhao WH, Liu K, Ma X et al. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 145, 2828–2840 (2020). doi: 10.1039/C9AN02485A

    CrossRef Google Scholar

    [86] Graham H, Chandler DJ, Dunbar SA. The genesis and evolution of bead-based multiplexing. Methods 158, 2–11 (2019). doi: 10.1016/j.ymeth.2019.01.007

    CrossRef Google Scholar

    [87] Miyazaki CM, Kinahan DJ, Mishra R, Mangwanya F, Kilcawley N et al. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens Bioelectron 119, 86–93 (2018). doi: 10.1016/j.bios.2018.07.056

    CrossRef Google Scholar

    [88] Ming K, Kim J, Biondi MJ, Syed A, Chen K et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 9, 3060–74 (2015). doi: 10.1021/nn5072792

    CrossRef Google Scholar

    [89] Chia YH, Yeh JA, Huang YY, Luo Y. Simultaneous multi-color optical sectioning fluorescence microscopy with wavelength-coded volume holographic gratings. Opt Express 28, 37177–37187 (2020). doi: 10.1364/OE.409179

    CrossRef Google Scholar

    [90] Kage D, Hoffmann K, Borcherding H, Schedler U, Resch-Genger U. Lifetime encoding in flow cytometry for bead-based sensing of biomolecular interaction. Sci Rep 10, 19477 (2020). doi: 10.1038/s41598-020-76150-x

    CrossRef Google Scholar

    [91] Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25, 071203 (2020).

    Google Scholar

    [92] Cordina NM, Sayyadi N, Parker LM, Everest-Dass A, Brown LJ et al. Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates. Sci Rep 8, 4521 (2018). doi: 10.1038/s41598-018-22702-1

    CrossRef Google Scholar

    [93] Zhang J, Shikha S, Mei QS, Liu JL, Zhang Y. Fluorescent microbeads for point-of-care testing: a review. Microchim Acta 186, 361 (2019). doi: 10.1007/s00604-019-3449-y

    CrossRef Google Scholar

    [94] Becker W. Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin Heidelberg, 2005).

    Google Scholar

    [95] Wei LP, Yan WR, Ho D. Recent advances in fluorescence lifetime analytical microsystems: Contact optics and CMOS time-resolved electronics. Sensors (Basel) 17, 2800 (2017). doi: 10.3390/s17122800

    CrossRef Google Scholar

    [96] Han YY, Gu Y, Zhang AC, Lo YH. Imaging technologies for flow cytometry. Lab Chip 16, 4639–4647 (2016). doi: 10.1039/C6LC01063F

    CrossRef Google Scholar

    [97] Lu GL, Fei BW. Medical hyperspectral imaging: a review. J Biomed Opt 19, 010901 (2014). doi: 10.1117/1.JBO.19.1.010901

    CrossRef Google Scholar

    [98] Signoroni A, Savardi M, Baronio A, Benini S. Deep learning meets hyperspectral image analysis: A multidisciplinary review. J Imaging 5, 52 (2019). doi: 10.3390/jimaging5050052

    CrossRef Google Scholar

    [99] Seo S, Su TW, Tseng DK, Erlinger A, Ozcan A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9, 777–787 (2009). doi: 10.1039/B813943A

    CrossRef Google Scholar

    [100] Su TW, Seo S, Erlinger A, Ozcan A. High‐throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip. Biotechnol Bioeng 102, 856–868 (2009). doi: 10.1002/bit.22116

    CrossRef Google Scholar

    [101] Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010). doi: 10.1039/c000453g

    CrossRef Google Scholar

    [102] Kim SB, Bae H, Koo KI, Dokmeci MR, Ozcan A et al. Lens-free imaging for biological applications. J Lab Autom 17, 43–49 (2012). doi: 10.1177/2211068211426695

    CrossRef Google Scholar

    [103] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8, 98–106 (2008). doi: 10.1039/B713695A

    CrossRef Google Scholar

    [104] Ah Lee S, Leitao R, Zheng GA, Yang S, Rodriguez A et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis. PLoS One 6, e26127 (2011). doi: 10.1371/journal.pone.0026127

    CrossRef Google Scholar

    [105] Ah Lee S, Yang C. A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14, 3056–3063 (2014). doi: 10.1039/C4LC00523F

    CrossRef Google Scholar

    [106] Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I et al. Lensfree microscopy on a cellphone. Lab Chip 10, 1787–1792 (2010). doi: 10.1039/c003477k

    CrossRef Google Scholar

    [107] Im H, Castro CM, Shao HL, Liong M, Song J et al. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc Natl Acad Sci USA 112, 5613–5618 (2015). doi: 10.1073/pnas.1501815112

    CrossRef Google Scholar

    [108] Mariën J, Stahl R, Lambrechts A, Van Hoof C, Yurt A. Color lens-free imaging using multi-wavelength illumination based phase retrieval. Opt Express 28, 33002–33018 (2020). doi: 10.1364/OE.402293

    CrossRef Google Scholar

    [109] Goda K, Tsia KK, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009). doi: 10.1038/nature07980

    CrossRef Google Scholar

    [110] Basiji DA, Ortyn WE, Liang LC, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med 27, 653–670 (2007). doi: 10.1016/j.cll.2007.05.008

    CrossRef Google Scholar

    [111] Hu WT, Soper SA, Jackson JM. Time-delayed integration–spectral flow cytometer (TDI-SFC) for low-abundance-cell immunophenotyping. Anal Chem 91, 4656–4664 (2019). doi: 10.1021/acs.analchem.9b00021

    CrossRef Google Scholar

    [112] Schonbrun E, Gorthi SS, Schaak D. Microfabricated multiple field of view imaging flow cytometry. Lab Chip 12, 268–273 (2012). doi: 10.1039/C1LC20843H

    CrossRef Google Scholar

    [113] Gorthi SS, Schaak D, Schonbrun E. Fluorescence imaging of flowing cells using a temporally coded excitation. Opt Express 21, 5164–5170 (2013). doi: 10.1364/OE.21.005164

    CrossRef Google Scholar

    [114] Ho D, Noor MO, Krull UJ, Gulak G, Genov R. CMOS tunable-color image sensor with dual-ADC shot-noise-aware dynamic range extension. IEEE Trans Circ Syst I Regular Papers 60, 2116–2129 (2013). doi: 10.1109/TCSI.2013.2239115

    CrossRef Google Scholar

    [115] Cleary A, Glidle A, Laybourn PJR, Garcia-Blanco S, Pellegrini S et al. Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices. Appl Phys Lett 91, 071123 (2007). doi: 10.1063/1.2772175

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1805) PDF downloads(294) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint