Citation: | Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127 |
[1] | Gnauck AH, Tkach RW, Chraplyvy AR, Li T. High-capacity optical transmission systems. J Lightwave Technol 26, 1032–1045 (2008). doi: 10.1109/JLT.2008.922140 |
[2] | Rademacher G, Luís RS, Puttnam BJ, Eriksson TA, Agrell E et al. 159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber. In Proceedings of the Optical Fiber Communication Conference 2018 1–3 (Optica Publishing Group, 2018); http://doi.org/10.1364/OFC.2018.Th4C.4. |
[3] | Saliba SD, Scholten RE. Linewidths below 100 kHz with external cavity diode lasers. Appl Opt 48, 6961–6966 (2009). doi: 10.1364/AO.48.006961 |
[4] | Keaveney J, Hamlyn JW, Adams CS, Hughes IG. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of < 1 MHz. Rev Sci Instrum 87, 095111 (2016). doi: 10.1063/1.4963230 |
[5] | Baeuerle B, Heni W, Hoessbacher C, Fedoryshyn Y, Koch U et al. 120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV. Opt Express 27, 16823–16832 (2019). doi: 10.1364/OE.27.016823 |
[6] | Hiraki T, Aihara T, Takeda K, Fujii T, Kakitsuka T et al. Membrane InGaAsP Mach-Zehnder modulator with SiN: D waveguides on Si platform. Opt Express 27, 18612–18619 (2019). doi: 10.1364/OE.27.018612 |
[7] | Ahmed M. Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys Wave Phen 22, 266–272 (2014). doi: 10.3103/S1541308X14040104 |
[8] | Kani J, Iwatsuki K, Imai T. Optical multiplexing technologies for access-area applications. IEEE J Sel Top Quantum Electron 12, 661–668 (2006). doi: 10.1109/JSTQE.2006.876170 |
[9] | Bergano NS, Davidson CR. Wavelength division multiplexing in long-haul transmission systems. J. Lightwave Technol 14, 1299–1308 (1996). doi: 10.1109/50.511662 |
[10] | Chen ZY, Yan LS, Pan Y, Jiang L, Yi AL et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci Appl 6, e16207 (2017). doi: 10.1038/lsa.2016.207 |
[11] | Fazea Y, Mezhuyev V. Selective mode excitation techniques for mode-division multiplexing: a critical review. Opt Fiber Technol 45, 280–288 (2018). doi: 10.1016/j.yofte.2018.08.004 |
[12] | Wang SP, Wu H, Zhang M, Dai DX. A 32-channel hybrid wavelength-/mode-division (de) Multiplexer on silicon. IEEE Photonics Technol Lett 30, 1194–1197 (2018). doi: 10.1109/LPT.2018.2839533 |
[13] | Jiang WF, Miao JY, Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci Rep 9, 13223 (2019). doi: 10.1038/s41598-019-49763-0 |
[14] | Pan TH, Tseng SY. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express 23, 10405–10412 (2015). doi: 10.1364/OE.23.010405 |
[15] | Jiang WF. Ultra-compact and fabrication-tolerant mode multiplexer and demultiplexer based on angled silicon waveguides. Opt Commun 425, 141–145 (2018). doi: 10.1016/j.optcom.2018.05.009 |
[16] | Li HQ, Wang PJ, Yang TJ, Dai TG, Wang GC et al. Experimental demonstration of a broadband two-mode multi/demultiplexer based on asymmetric Y-junctions. Opt Laser Technol 100, 7–11 (2018). doi: 10.1016/j.optlastec.2017.09.043 |
[17] | Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol 30, 2421–2426 (2012). doi: 10.1109/JLT.2012.2199961 |
[18] | Dai DX, Wang SP. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front Optoelectron 9, 450–465 (2016). doi: 10.1007/s12200-016-0557-8 |
[19] | Li HQ, Li SQ, Yang TJ, Xu JY, Li J et al. Silicon two-mode multi/demultiplexer based on tapered couplers. Optik 176, 518–522 (2019). doi: 10.1016/j.ijleo.2018.09.115 |
[20] | Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 50, 629–635 (2020). doi: 10.1070/QEL17276 |
[21] | Porfirev AP, Fomchenkov SA, Gridin GE, Khonina SN. Binary diffractive optics for 3D-demultiplexing of OAM beams. J Phys:Conf Ser 1124, 051015 (2018). doi: 10.1088/1742-6596/1124/5/051015 |
[22] | Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In Yasin M, Harun SW, Arof H. Recent Progress in Optical Fiber Research. IntechOpen Publisher, Croatia, 2012. |
[23] | Karpeev SV, Pavelyev VS, Soifer VA, Khonina SN, Duparre M et al. Transverse mode multiplexing by diffractive optical elements. Proc SPIE 5854, 1–12 (2005). doi: 10.1117/12.634547 |
[24] | Stark JB, Mitra P, Sengupta A. Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt Fiber Technol 7, 275–288 (2001). doi: 10.1006/ofte.2000.0345 |
[25] | Secondini M, Forestieri E. The limits of the nonlinear Shannon limit. In Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (IEEE, 2016). https://doi.org/10.1 364/OFC.2016.Th3D.1 |
[26] | Armstrong J. OFDM for optical communications. J Lightwave Technol 27, 189–204 (2009). doi: 10.1109/JLT.2008.2010061 |
[27] | Chow CW, Yeh CH, Wang CH, Wu CL, Chi S et al. Studies of OFDM signal for broadband optical access networks. IEEE J Sel Area Commun 28, 800–807 (2010). doi: 10.1109/JSAC.2010.100805 |
[28] | Gunawan WH, Liu Y, Chow CW, Chang YH, Yeh CH. High speed visible light communication using digital power domain multiplexing of orthogonal frequency division multiplexed (OFDM) signals. Photonics 8, 500 (2021). doi: 10.3390/photonics8110500 |
[29] | Saito Y, Kishiyama Y, Benjebbour A, Nakamura T, Li AX et al. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 77th Vehicular Technology Conference (VTC Spring) 1–5 (IEEE, 2013);http://doi.org/10.1109/VTCSpring.2013.6692652. |
[30] | DeLange OE. Wide-band optical communication systems: part II-Frequency-division multiplexing. Proc IEEE 58, 1683–1690 (1970). doi: 10.1109/PROC.1970.7989 |
[31] | Nosu K, Ishio H. A design of optical multi/demultiplexers for optical wavelength-division multiplexing transmission. Trans IECE 62-B, 1030–1036 (1979). |
[32] | Tomlinson WJ. Wavelength multiplexing in multimode optical fibers. Appl Opt 16, 2180–2194 (1977). doi: 10.1364/AO.16.002180 |
[33] | Senior JM, Cusworth SD. Wavelength division multiplexing in optical fibre sensor systems and networks: a review. Opt Laser Technol 22, 113–126 (1990). doi: 10.1016/0030-3992(90)90021-U |
[34] | Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application. J Lightwave Technol 2, 448–463 (1984). doi: 10.1109/JLT.1984.1073653 |
[35] | Li CY, Lu HH, Tsai WS, Feng CY, Chou CR et al. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser. Opt Lett 45, 6206–6209 (2020). doi: 10.1364/OL.409843 |
[36] | Liu Z, Zhang JS, Li XL, Wang LL, Li JG et al. 25×50 Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating. Photonics Res 7, 659–663 (2019). doi: 10.1364/PRJ.7.000659 |
[37] | Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94 |
[38] | Goossens JW, Yousefi MI, Jaouën Y, Hafermann H. Polarization-division multiplexing based on the nonlinear Fourier transform. Opt Express 25, 26437–26452 (2017). doi: 10.1364/OE.25.026437 |
[39] | Hayee MI, Cardakli MC, Sahin AB, Willner AE. Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme. IEEE Photonics Technol Lett 13, 881–883 (2001). doi: 10.1109/68.935835 |
[40] | Hill PM, Olshansky R, Burns WK. Optical polarization division multiplexing at 4Gb/s. IEEE Photonics Technol Lett 4, 500–502 (1992). doi: 10.1109/68.136500 |
[41] | Evangelides SG, Mollenauer LF, Gordon JP, Bergano NS. Polarization multiplexing with solitons. J Lightwave Technol 10, 28–35 (1992). doi: 10.1109/50.108732 |
[42] | Han Y, Li G. Experimental demonstration of direct-detection quaternary differential polarisation-phase-shift keying with electrical multilevel decision. Electron Lett 42, 109–111 (2006). doi: 10.1049/el:20063534 |
[43] | Noe R, Hinz S, Sandel D, Wust F. Crosstalk detection schemes for polarization division multiplex transmission. J Lightwave Technol 19, 1469–1475 (2001). doi: 10.1109/50.956134 |
[44] | Coura DJC, Silva JAL, Segatto MEV. A bandwidth scalable OFDM passive optical network for future access network. Photon Netw Commun 18, 409 (2009). doi: 10.1007/s11107-009-0203-0 |
[45] | Morant M, Llorente R, Hauden J, Quinlan T, Mottet A et al. Dual-drive LiNbO3 interferometric Mach-Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication systems. Opt Express 19, B452–B458 (2011). doi: 10.1364/OE.19.00B452 |
[46] | Qiu HY, Yu H, Hu T, Jiang GM, Shao HF et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express 21, 17904–17911 (2013). doi: 10.1364/OE.21.017904 |
[47] | Tan Y, Wu H, Wang SP, Li CL, Dai DX. Silicon-based hybrid demultiplexer for wavelength-and mode-division multiplexing. Opt Lett 43, 1962–1965 (2018). doi: 10.1364/OL.43.001962 |
[48] | Sun CL, Yu Y, Chen GY, Zhang XL. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt Lett 41, 3257–3260 (2016). doi: 10.1364/OL.41.003257 |
[49] | Guan XW, Ding YH, Frandsen LH. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt Lett 40, 3893–3896 (2015). doi: 10.1364/OL.40.003893 |
[50] | Han LS, Kuo BPP, Alic N, Radic S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt Express 26, 14800–14809 (2018). doi: 10.1364/OE.26.014800 |
[51] | Zhang Y, He Y, Zhu QM, Qiu CY, Su YK. On-chip silicon photonic 2×2 mode-and polarization-selective switch with low inter-modal crosstalk. Photonics Res 5, 521–526 (2017). doi: 10.1364/PRJ.5.000521 |
[52] | Khan LU. Visible light communication: applications, architecture, standardization and research challenges. Digit Commun Netw 3, 78–88 (2017). doi: 10.1016/j.dcan.2016.07.004 |
[53] | Vega-Colado C, Arredondo B, Torres JC, López-Fraguas E, Vergaz R et al. An all-organic flexible visible light communication system. Sensors 18, 3045 (2018). doi: 10.3390/s18093045 |
[54] | Wang YQ, Yang C, Wang YG, Chi N. Gigabit polarization division multiplexing in visible light communication. Opt Lett 39, 1823–1826 (2014). doi: 10.1364/OL.39.001823 |
[55] | Perkins R, Gruev V. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters. Opt Express 18, 25815–25824 (2010). doi: 10.1364/OE.18.025815 |
[56] | Thangaraj C, Pownall R, Nikkel P, Yuan GW, Lear KL et al. Fully CMOS-compatible on-chip optical clock distribution and recovery. IEEE Trans Very Scale Integr (VLSI) Syst 18, 1385–1398 (2010). doi: 10.1109/TVLSI.2009.2024206 |
[57] | Ivanovich D, Powell SB, Gruev V, Chamberlain RD. Polarization division multiplexing for optical data communications. Proc SPIE 10538, 105381D (2018). doi: 10.1117/12.2290452 |
[58] | Kanada T, Franzen DL. Single-mode fiber dispersion measurements using optical sampling with a mode-locked laser diode. Opt Lett 11, 330–332 (1986). doi: 10.1364/OL.11.000330 |
[59] | Saitoh K, Koshiba M, Takenaga K, Matsuo S. Crosstalk and core density in uncoupled multicore fibers. IEEE Photonics Technol Lett 24, 1898–1901 (2012). doi: 10.1109/LPT.2012.2217489 |
[60] | Macho A, Morant M, Llorente R. Experimental evaluation of nonlinear crosstalk in multi-core fiber. Opt Express 23, 18712–18720 (2015). doi: 10.1364/OE.23.018712 |
[61] | Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt Express 19, 16576–16592 (2011). doi: 10.1364/OE.19.016576 |
[62] | Sasaki Y, Takenaga K, Aikawa K, Miyamoto Y, Morioka T. Single-mode 37-core fiber with a cladding diameter of 248 μm. In Proceedings of 2017 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2017). https://doi.org/10.1364/OFC.2017.Th1H.2 |
[63] | Abedin KS, Taunay TF, Fishteyn M, DiGiovanni DJ, Supradeepa VR et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt Express 20, 20191–20200 (2012). doi: 10.1364/OE.20.020191 |
[64] | Rademacher G, Luís RS, Puttnam BJ, Ryf R, Furukawa H et al. 93.34 Tbit/s/mode (280 Tbit/s) transmission in a 3-mode graded-index few-mode fiber. In Proceedings of 2018 Optical Fiber Communications Conference and Exposition 1–3 (IEEE, 2018). https://doi.org/10.1364/OFC.2018.W4C.3 |
[65] | Rademacher G, Puttnam BJ, Luís RS, Eriksson TA, Fontaine NK et al. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat Commun 12, 4238 (2021). doi: 10.1038/s41467-021-24409-w |
[66] | Hayashi T, Tamura Y, Hasegawa T, Taru T. Record-low spatial mode dispersion and ultra-low loss coupled multi-core fiber for ultra-long-haul transmission. J Lightwave Technol 35, 450–457 (2017). doi: 10.1109/JLT.2016.2614000 |
[67] | van Uden RGH, Correa RA, Lopez EA, Huijskens FM, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865–870 (2014). doi: 10.1038/nphoton.2014.243 |
[68] | Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H et al. Dense SDM (12-Core × 3-Mode) transmission over 527 km With 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization. J Lightwave Technol 34, 196–204 (2016). doi: 10.1109/JLT.2015.2463102 |
[69] | Puttnam BJ, Rademacher G, Luís RS. Space-division multiplexing for optical fiber communications. Optica 8, 1186–1203 (2021). doi: 10.1364/OPTICA.427631 |
[70] | Jiang WF, Hu JZ, Mao SQ, Zhang HY, Zhou LJ et al. Broadband silicon four-mode (de) multiplexer using subwavelength grating-assisted triple-waveguide couplers. J Lightwave Technol 39, 5042–5047 (2021). doi: 10.1109/JLT.2021.3079911 |
[71] | He Y, Zhang Y, Zhu QM, An SH, Cao RY et al. Silicon high-order mode (de) multiplexer on single polarization. J Lightwave Technol 36, 5746–5753 (2018). doi: 10.1109/JLT.2018.2878529 |
[72] | Butt MA, Khonina SN, Kazanskiy NL. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 30, 292–299 (2020). doi: 10.1080/17455030.2018.1506191 |
[73] | Butt MA, Khonina SN, Kazanskiy NL. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens J 20, 1355–1362 (2020). doi: 10.1109/JSEN.2019.2944391 |
[74] | Butt MA, Kazanskiy NL. Mode sensitivity analysis of vertically arranged double hybrid plasmonic waveguide. Opt Adv Mater Rapid Commun 14, 385–388 (2020). |
[75] | Kazanskiy NL, Butt MA. One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices. Photonics Lett Poland 12, 85–87 (2020). doi: 10.4302/plp.v12i3.1044 |
[76] | Butt MA, Khonina SN, Kazanskiy NL. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 µm and 3.392 µm wavelength. Appl Opt 59, 7821–7828 (2020). doi: 10.1364/AO.398550 |
[77] | Khonina SN, Kazanskiy NL, Butt MA. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens J 20, 8469–8476 (2020). doi: 10.1109/JSEN.2020.2985840 |
[78] | Butt MA, Khonina SN, Kazanskiy NL. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys Lett 17, 076201 (2020). doi: 10.1088/1612-202X/ab8faa |
[79] | Kazanskiy NL, Khonina SN, Butt MA. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors 20, 3416 (2020). doi: 10.3390/s20123416 |
[80] | Yu F, Yamamoto K, Piao XQ, Yokoyama S. Multimode interference waveguide switch of electro-optic polymer with tapered access waveguides. Phys Procedia 14, 25–28 (2011). doi: 10.1016/j.phpro.2011.05.006 |
[81] | Wu XR, Huang CR, Xu K, Shu C, Tsang HK. Mode-division multiplexing for silicon photonic network-on-chip. J Lightwave Technol 35, 3223–3228 (2017). doi: 10.1109/JLT.2017.2677085 |
[82] | Luo LW, Gabrielli LH, Lipson M. On-chip mode-division multiplexer. In Proceedings of the CLEO: Science and Innovations 2013 1–2 (Optica Publishing Group, 2013);http://doi.org/10.1364/CLEO_SI.2013.CTh1C.6. |
[83] | Liu YJ, Xu K, Wang S, Shen WH, Xie HC et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat Commun 10, 3263 (2019). doi: 10.1038/s41467-019-11196-8 |
[84] | He Y, An SH, Li XF, Huang YT, Zhang Y et al. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings. In Proceedings of 2021 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2021).https://ieeexplore.ieee.org/document/9489861 |
[85] | Su YK, He Y, Chen HS, Li XY, Li GF. Perspective on mode-division multiplexing. Appl Phys Lett 118, 200502 (2021). doi: 10.1063/5.0046071 |
[86] | Ding YH, Ou HY, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technol Lett 25, 648–651 (2013). doi: 10.1109/LPT.2013.2247394 |
[87] | Koonen AMJ, Chen HS, van den Boom HPA, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technol Lett 24, 1961–1964 (2012). 88. https://doi.org/10.1109/LPT.2012.2219304 |
[88] | Li CL, Liu DJ, Dai DX. Multimode silicon photonics. Nanophotonics 8, 227–247 (2018). |
[89] | Dai DX. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In Proceedings of 2012 Asia Communications and Photonics Conference 1–3 (IEEE, 2012). https://ieeexplore.ieee.org/abstract/document/6510982 |
[90] | Binici HI. Controlling light inside a multi-mode fiber by wavefront shaping. (The Graduate School of Natural and Applied Sciences of Middle East Technical University, 2018).http://dx.doi.org/10.13140/RG.2.2.35259.52005 |
[91] | Ding YH, Xu J, Da Ros F, Huang B, Ou HY et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express 21, 10376–10382 (2013). doi: 10.1364/OE.21.010376 |
[92] | Dai DX, Wang J, Shi YC. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett 38, 1422–1424 (2013). doi: 10.1364/OL.38.001422 |
[93] | Ye MY, Yu Y, Sun CL, Zhang XL. On-chip data exchange for mode division multiplexed signals. Opt Express 24, 528–535 (2016). doi: 10.1364/OE.24.000528 |
[94] | Yan Y, Xie GD, Lavery MPJ, Huang H, Ahmed N et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 5, 4876 (2014). doi: 10.1038/ncomms5876 |
[95] | Lee D, Sasaki H, Fukumoto H, Hiraga K, Nakagawa T. Orbital angular momentum (OAM) multiplexing: an enabler of a new era of wireless communications. IEICE Trans Commun E100-B, 1044–1063 (2017). |
[96] | Yan Y, Li L, Zhao Z, Xie GD, Wang Z et al. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. In Proceedings of 2016 IEEE International Conference on Communications (ICC) 1–6 (IEEE, 2016); http://doi.org/10.1109/ICC.2016.7511277. |
[97] | Mahmouli FE, Walker SD. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wireless Commun Lett 2, 223–226 (2013). doi: 10.1109/WCL.2013.012513.120686 |
[98] | Zhang ZF, Zheng SL, Chen YL, Jin XF, Chi H et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system. Sci Rep 6, 25418 (2016). doi: 10.1038/srep25418 |
[99] | Mohammadi SM, Daldorff LKS, Bergman JES, Karlsson RL, Thide B et al. Orbital angular momentum in radio-A system study. IEEE Trans Antennas Propag 58, 565–572 (2010). doi: 10.1109/TAP.2009.2037701 |
[100] | Cagliero A, De Vita A, Gaffoglio R, Sacco B. A new approach to the link budget concept for an OAM communication link. IEEE Antennas Wireless Propag Lett 15, 568–571 (2015). |
[101] | Tian H, Liu ZQ, Xi W, Nie GF, Liu L et al. Beam axis detection and alignment for uniform circular array-based orbital angular momentum wireless communication. IET Commun 10, 44–49 (2016). doi: 10.1049/iet-com.2015.0136 |
[102] | Yan Y, Li L, Xie GD, Bao CJ, Liao PC et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing. In Proceedings of 2015 IEEE International Conference on Communications (ICC) 1370–1375 (IEEE, 2015);http://doi.org/10.1109/ICC.2015.7248514. |
[103] | Zheng SL, Hui XN, Jin XF, Chi H, Zhang XM. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans Antennas Wireless Propag Lett 63, 1530–1536 (2015). doi: 10.1109/TAP.2015.2393885 |
[104] | Chen ST, Shi YC, He SL, Dai DX. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt Express 23, 12840–12849 (2015). doi: 10.1364/OE.23.012840 |
[105] | Aamer M, Gutierrez AM, Brimont A, Vermeulen D, Roelkens G et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonics Technol Lett 24, 2031–2034 (2012). doi: 10.1109/LPT.2012.2218593 |
[106] | Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Verheyen P et al. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonics Technol Lett 26, 718–721 (2014). doi: 10.1109/LPT.2014.2303793 |
[107] | Butt MA, Khonina SN, Kazanskiy NL. Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study. Waves Random Complex Media 31, 2397–2406 (2021). doi: 10.1080/17455030.2020.1744769 |
[108] | Tan Y, Chen ST, Dai DX. Polarization-selective microring resonators. Opt Express 25, 4106–4119 (2017). doi: 10.1364/OE.25.004106 |
[109] | Dai DX, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett 41, 2346–2349 (2016). doi: 10.1364/OL.41.002346 |
[110] | Tong YY, Zhou W, Wu XR, Tsang HK. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J Quantum Electron 56, 8400107 (2020). |
[111] | Kuo PC, Tong YY, Chow CW, Tsai JF, Liu Y et al. 4.36 Tbit/s silicon chip-to-chip transmission via few-mode fiber (FMF) using 2D sub-wavelength grating couplers. In Proceedings of the Optical Fiber Communication Conference 2021 (Optica Publishing Group, 2021); http://doi.org/10.1364/OFC.2021.M3D.6. |
[112] | Zhao NB, Li XY, Li GF, Kahn JM. Capacity limits of spatially multiplexed free-space communication. Nat Photonics 9, 822–826 (2015). doi: 10.1038/nphoton.2015.214 |
[113] | Rahmani B, Loterie D, Konstantinou G, Psaltis D, Moser C. Multimode optical fiber transmission with a deep learning network. Light Sci Appl 7, 69 (2018). doi: 10.1038/s41377-018-0074-1 |
[114] | Sharkawy A, Shi SY, Prather DW. Multichannel wavelength division multiplexing with photonic crystals. Appl Opt 40, 2247–2252 (2001). doi: 10.1364/AO.40.002247 |
[115] | Smajic J, Hafner C, Erni D. On the design of photonic crystal multiplexers. Opt Express 11, 566–571 (2003). doi: 10.1364/OE.11.000566 |
[116] | Liu T, Zakharian AR, Fallahi M, Moloney JV, Mansuripur M. Multimode interference-based photonic crystal waveguide power splitter. J Lightwave Technol 22, 2842–2846 (2004). doi: 10.1109/JLT.2004.834479 |
[117] | Hosseini A, Xu XC, Subbaraman H, Lin CY, Rahimi S et al. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator. Opt Express 20, 12318–12325 (2012). doi: 10.1364/OE.20.012318 |
[118] | Shi JX, Pollard ME, Angeles CA, Chen RQ, Gates JC et al. Photonic crystal and quasi-crystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide. Sci Rep 7, 1812 (2017). doi: 10.1038/s41598-017-01842-w |
[119] | Balasaraswathi M, Singh M, Malhotra J, Dhasarathan V. A high-speed radio-over-free-space optics link using wavelength division multiplexing-mode division multiplexing-multibeam technique. Comput Electr Eng 87, 106779 (2020). doi: 10.1016/j.compeleceng.2020.106779 |
[120] | Zhou ZL, Li EK, Zhang HG. Performance analysis of duobinary and AMI techniques using LG modes in hybrid MDM-WDM-FSO transmission system. J Opt Commun , 1–7 (2019). |
[121] | Amphawan A, Fazea Y. Multidiameter optical ring and Hermite-Gaussian vortices for wavelength division multiplexing-mode division multiplexing. Opt Eng 55, 106109 (2016). doi: 10.1117/1.OE.55.10.106109 |
[122] | Wang SP, Feng XL, Gao SM, Shi YC, Dai TG et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett 42, 2802–2805 (2017). doi: 10.1364/OL.42.002802 |
[123] | Gao JT, Nazemosadat E, Yang Y, Fu SN, Tang M et al. Elliptical-core highly nonlinear few-mode fiber based OXC for WDM-MDM networks. IEEE J Sel Top Quant Electron 27, 7600511 (2021). |
[124] | Mulugeta T, Rasras M. Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing. Opt Express 23, 943–949 (2015). doi: 10.1364/OE.23.000943 |
[125] | Yang YD, Li Y, Huang YZ, Poon AW. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express 22, 22172–22183 (2014). doi: 10.1364/OE.22.022172 |
[126] | Nawwar OM, Shalaby HMH, Pokharel RK. Photonic crystal-based compact hybrid WDM/MDM (De)multiplexer for SOI platforms. Opt Lett 43, 4176–4179 (2018). doi: 10.1364/OL.43.004176 |
[127] | He Y, Zhang Y, Wang HW, Sun L, Su YK. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing. Opt Lett 45, 2846–2849 (2020). doi: 10.1364/OL.390015 |
[128] | Dai DX. Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics 2014 (Optica Publishing Group, 2014); http://doi.org/10.1364/IPRSN.2014.IM2A.2. |
[129] | Wang J, Chen PX, Chen ST, Shi YC, Dai DX. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express 22, 12799–12807 (2014). doi: 10.1364/OE.22.012799 |
[130] | Kakati D, Sonkar RK. A 2×320 Gbps hybrid PDM-MDM-OFDM system for high-speed terrestrial FSO communication. In Proceedings of the 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020) C5F_3 (Optica Publishing Group, 2020); http://doi.org/10.1364/CLEOPR.2020.C5F_3. |
[131] | Minz M, Mishra D, Sonkar RK, Khan MM. Grating-assisted MDM-PDM hybrid (de)multiplexer for optical interconnect applications. Proc SPIE 11193, 111930C (2019). |
[132] | Xu LH, Wang Y, El-Fiky E, Mao D, Kumar A et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform. J Lightwave Technol 37, 1231–1240 (2019). doi: 10.1109/JLT.2018.2890718 |
[133] | Wang Y, Ma ML, Yun H, Lu ZQ, Wang X et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photonics J 8, 7805709 (2016). |
[134] | Sun CL, Yu Y, Ye MY, Chen GY, Zhang XL. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci Rep 6, 38494 (2016). doi: 10.1038/srep38494 |
[135] | Lee SY, Darmawan S, Lee CW, Chin MK. Transformation between directional couplers and multi-mode interferometers based on ridge waveguides. Opt Express 12, 3079–3085 (2004). doi: 10.1364/OPEX.12.003079 |
[136] | Chang WJ, Lu LLZ, Ren XS, Li DY, Pan ZP et al. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt Express 26, 8162–8170 (2018). doi: 10.1364/OE.26.008162 |
[137] | Sun Y, Xiong YL, Winnie NY. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett 41, 3743–3746 (2016). doi: 10.1364/OL.41.003743 |
[138] | Shalaby HMH. Bi-directional coupler as a mode-division multiplexer/demultiplexer. J Lightwave Technol 34, 3633–3640 (2016). doi: 10.1109/JLT.2016.2580561 |
[139] | Liu L. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt Express 23, 12135–12143 (2015). doi: 10.1364/OE.23.012135 |
[140] | Yu ZJ, Tong YY, Tsang HK, Sun XK. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun 11, 2602 (2020). doi: 10.1038/s41467-020-15358-x |
[141] | Nguyen VH, Kim IK, Seok TJ. Silicon photonic mode-division reconfigurable optical add/drop multiplexers with mode-selective integrated MEMS switches. Photonics 7, 80 (2020). doi: 10.3390/photonics7040080 |
[142] | Wei YH, Zhang M, Dai DX. Multichannel mode-selective silicon photonic add/drop multiplexer with phase change material. J Opt Soc Am B 37, 3341–3350 (2020). doi: 10.1364/JOSAB.400897 |
[143] | González-Andrade D, Dias A, Wangüemert-Pérez JG, Ortega-Moñux A, Molina-Fernández Í et al. Experimental demonstration of a broadband mode converter and multiplexer based on subwavelength grating waveguides. Opt Laser Technol 129, 106297 (2020). doi: 10.1016/j.optlastec.2020.106297 |
[144] | Driscoll JB, Grote RR, Souhan B, Dadap JI, Lu M et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett 38, 1854–1856 (2013). doi: 10.1364/OL.38.001854 |
[145] | Xing JJ, Li ZY, Xiao X, Yu JZ, Yu YD. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett 38, 3468–3470 (2013). doi: 10.1364/OL.38.003468 |
[146] | Mehrabi K, Zarifkar A, Miri M. Silicon-based dual-mode polarization beam splitter for hybrid mode/polarization-division-multiplexed systems. Opt Commun 479, 126474 (2021). doi: 10.1016/j.optcom.2020.126474 |
[147] | Manimaraboopathy M, Kumar GAS, Mohanraj J, Valliammai M. Realization of all-optical multiplexer-demultiplexer in mid-IR wavelengths using triple-core photonic quasi-crystal fiber. Opt Commun 481, 126556 (2021). doi: 10.1016/j.optcom.2020.126556 |
[148] | Jiang WF, Cheng FY, Xu J, Wan HD. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B 35, 2532–2540 (2018). doi: 10.1364/JOSAB.35.002532 |
[149] | Kaushalram A, Hegde G, Talabattula S. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides. Sci Rep 10, 16692 (2020). doi: 10.1038/s41598-020-73936-x |
[150] | Chen GFR, Choi JW, Sahin E, Ng DKT, Tan DTH. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride. Opt Express 27, 23549–23557 (2019). doi: 10.1364/OE.27.023549 |
[151] | Luo LW, Ophir N, Chen CP, Gabrielli LH, Poitras CB et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun 5, 3069 (2014). doi: 10.1038/ncomms4069 |
[152] | Han LS, Liang S, Xu JJ, Qiao LJ, Zhu HL et al. Simultaneous wavelength-and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photonics J 8, 7903510 (2016). |
[153] | Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode hermite-gaussian beams. Tech Phys Lett 25, 489–491 (1999). doi: 10.1134/1.1262525 |
[154] | Kotlyar VV, Soifer VA, Khonina SN. Rotation of multimode Gauss-Laguerre light beams in free space. Tech Phys Lett 23, 657–658 (1997). doi: 10.1134/1.1261648 |
[155] | Kotlyar VV, Soifer VA, Khonina SN. Rotation of multimodal Gauss-Laguerre light beams in free space and in a fiber. Opt Lasers Eng 29, 343–350 (1998). doi: 10.1016/S0143-8166(97)00121-8 |
[156] | Lyubopytov VS, Tlyavlin AZ, Sultanov AK, Bagmanov VK, Khonina SN et al. Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling. Comput Opt 37, 352–359 (2013). doi: 10.18287/0134-2452-2013-37-3-352-359 |
[157] | Kotlyar VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by means of diffractive optics. J Mod Opt 45, 1495–1506 (1998). doi: 10.1080/09500349808230644 |
[158] | Khonina SN, Kotlyar VV, Soifer VA, Wang YX, Zhao DZ. Decomposition of a coherent light field using a phase Zernike filter. Proc SPIE 3573, 550–553 (1998). doi: 10.1117/12.324588 |
[159] | Khonina SN, Almazov AA. Design of multichannel phase spatial filter for selection of Gauss-Laguerre laser modes. Proc SPIE 4705, 30–39 (2002). doi: 10.1117/12.469021 |
[160] | Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 9807, 98070E (2016). |
[161] | Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 58, 8227–8236 (2019). doi: 10.1364/AO.58.008227 |
[162] | Khonina SN, Karpeev SV, Porfirev AP. Wavefront aberration sensor based on a multichannel diffractive optical element. Sensors 20, 3850 (2020). doi: 10.3390/s20143850 |
[163] | Khonina SN, Kotylar VV, Soifer VA. Diffraction computation of ‘focusator’ into longitudinal segment and multifocal lens. Proc SPIE 1780, 17800J (1993). |
[164] | Kotlyar VV, Khonina SN, Soifer VA. Iterative calculation of diffractive optical elements focusing into a three- dimensional domain and onto the surface of the body of rotation. J Mod Opt 43, 1509–1524 (1996). doi: 10.1080/09500349608232822 |
[165] | Kotlyar VV, Khonina SN, Soifer VA. Calculation of phase formers of non-diffracting images and a set of concentric rings. Optik 102, 45–50 (1996). |
[166] | Khonina SN, Kotlyar VV, Lushpin VV, Soifer VA. A method for design of composite DOEs for the generation of letter image. Opt Mem Neutral Networks 6, 213–220 (1997). |
[167] | Kotlyar VV, Khonina SN. Method for design of DOE for the generation of contour images. Proc SPIE 3348, 48–55 (1998). doi: 10.1117/12.302508 |
[168] | Porfirev AP, Khonina SN. Simple method for efficient reconfigurable optical vortex beam splitting. Opt Express 25, 18722–18735 (2017). doi: 10.1364/OE.25.018722 |
[169] | Porfirev A, Khonina S, Azizian-Kalandaragh Y, Kirilenko M. Efficient generation of arrays of closed-packed high-quality light rings. Photonics Nanostruct-Fundam Appl 37, 100736 (2019). doi: 10.1016/j.photonics.2019.100736 |
[170] | Porfirev AP, Khonina SN. Generation of closed-packed optical vortex beams using two-level pure-phase diffractive multiplexer. AIP Conf Proc 1874, 040042 (2017). |
[171] | Kudryashov SI, Danilov PA, Porfirev AP, Saraeva IN, Nguyen THT et al. High-throughput micropatterning of plasmonic surfaces by multiplexed femtosecond laser pulses for advanced IR-sensing applications. Appl Surf Sci 484, 948–956 (2019). doi: 10.1016/j.apsusc.2019.04.048 |
[172] | Pavlov D, Gurbatov S, Kudryashov SI, Danilov PA, Porfirev AP et al. 10-million-elements-per-second printing of infrared-resonant plasmonic arrays by multiplexed laser pulses. Opt Lett 44, 283–286 (2019). doi: 10.1364/OL.44.000283 |
[173] | Pavlov D, Porfirev A, Khonina S, Pan L, Kudryashov SI et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption. Appl Surf Sci 541, 148602 (2021). doi: 10.1016/j.apsusc.2020.148602 |
[174] | Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: new functions and applications. Sensors 21, 6690 (2021). doi: 10.3390/s21196690 |
[175] | Wang F, Liu XL, Cai YJ. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Prog Electromagn Res 150, 123–143 (2015). doi: 10.2528/PIER15010802 |
[176] | Korotkova O. Random Light Beams: Theory and Applications (CRC Press, Boca Raton, 2013). |
[177] | Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195 |
[178] | Eyyuboğlu HT. Propagation of higher order Bessel-Gaussian beams in turbulence. Appl Phys B 88, 259–265 (2007). doi: 10.1007/s00340-007-2707-6 |
[179] | Soifer V, Korotkova O, Khonina SN, Shchepakina E. Vortex beams in turbulent media: review. Comput Opt 40, 605–624 (2016). doi: 10.18287/2412-6179-2016-40-5-605-624 |
[180] | Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 56, E8–E15 (2017). doi: 10.1364/AO.56.0000E8 |
[181] | Zhou P, Wang XL, Ma YX, Ma HT, Xu XJ et al. Propagation property of a nonuniformly polarized beam array in turbulent atmosphere. Appl Opt 50, 1234–1239 (2011). doi: 10.1364/AO.50.001234 |
[182] | Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 40, 4887–4890 (2015). doi: 10.1364/OL.40.004887 |
[183] | Khonina SN, Kotlyar VV, Soifer VA, Lautanen J, Honkanen M et al. Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 110, 137–144 (1999). |
[184] | Dubois F, Emplit P, Hugon O. Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask. Opt Lett 19, 433–435 (1994). doi: 10.1364/OL.19.000433 |
[185] | Karpeev SV, Pavelyev VS, Duparre M, Luedge B, Rockstuhl C et al. DOE-aided analysis and generation of transverse coherent light modes in a stepped-index optical fiber. Opt Mem Neutral Networks (Inf Opt) 12, 27–34 (2003). |
[186] | Khonina SN, Striletz AS, Kovalev AA, Kotlyar VV. Propagation of laser vortex beams in a parabolic optical fiber. Proc SPIE 7523, 75230B (2010). |
[187] | Ye JF, Li Y, Han YH, Deng D, Guo ZY et al. Excitation and separation of vortex modes in twisted air-core fiber. Opt Express 24, 8310–8316 (2016). doi: 10.1364/OE.24.008310 |
[188] | Karpeev SV, Pavelyev VS, Khonina SN, Kazanskiy NL, Gavrilov AV et al. Fibre sensors based on transverse mode selection. J Mod Opt 54, 833–844 (2007). doi: 10.1080/09500340601066125 |
[189] | Khonina SN, Volotovsky SG. Self-reproduction of multimode laser fields in weakly guiding stepped-index fibers. Opt Mem Neutral Networks 16, 167–177 (2007). doi: 10.3103/S1060992X07030071 |
[190] | Karpeev S, Khonina SN. Experimental excitation and detection of angular harmonics in a step-index optical fiber. Opt Mem Neutral Networks 16, 295–300 (2007). doi: 10.3103/S1060992X07040133 |
[191] | Bozinovic N, Yue Y, Ren YX, Tur M, Kristensen P et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861 |
[192] | Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 105, 68–74 (2018). doi: 10.1016/j.optlaseng.2018.01.006 |
[193] | Moreno I, Davis JA, Ruiz I, Cottrell DM. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18, 7173–7183 (2010). doi: 10.1364/OE.18.007173 |
[194] | Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Opt Express 23, 17845–17859 (2015). doi: 10.1364/OE.23.017845 |
[195] | Fu SY, Zhang SK, Wang TL, Gao CQ. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Opt Express 24, 18486–18491 (2016). doi: 10.1364/OE.24.018486 |
[196] | Moreno I, Davis JA, Badham K, Sánchez-López MM, Holland JE et al. Vector beam polarization state spectrum analyzer. Sci Rep 7, 2216 (2017). doi: 10.1038/s41598-017-02328-5 |
[197] | Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM. Opt Express 25, 25697–25706 (2017). doi: 10.1364/OE.25.025697 |
[198] | Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of non-uniformly polarized laser beams with singular phase structures. Opt Express 27, 18484–18492 (2019). doi: 10.1364/OE.27.018484 |
[199] | Huang H, Xie GD, Yan Y, Ahmed N, Ren YX et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt Lett 39, 197–200 (2014). doi: 10.1364/OL.39.000197 |
[200] | Zhu XM, Kahn JM. Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 50, 1293–1300 (2002). doi: 10.1109/TCOMM.2002.800829 |
[201] | Cai Y, Chen Y, Eyyuboğlu HT, Baykal Y. Propagation of laser array beams in a turbulent atmosphere. Appl Phys B 88, 467–475 (2007). doi: 10.1007/s00340-007-2680-0 |
[202] | Raddatz L, White IH, Cunningham DG, Nowell MC. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links. J Lightwave Technol 16, 324–331 (1998). doi: 10.1109/50.661357 |
[203] | Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber. J Lightwave Technol 30, 658–665 (2012). doi: 10.1109/JLT.2011.2180509 |
[204] | Li SH, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci Rep 4, 3853 (2014). |
[205] | Deng D, Li Y, Zhao H, Han YH, Ye J F et al. High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber. J Opt 21, 055601 (2019). doi: 10.1088/2040-8986/ab0fe7 |
The number of research papers associated with different multiplexing techniques indexed in the Scopus database.
The advancement of transmission volume in FOs established by the state-of-the-art laboratory.
Schematic representation of one-directional WDM broadcast.
(a) Graphical illustration of the white-lighting and WDM-VLC network utilizing broadcast gratings and a tailored diffuser over a 20 m FSO link with a 3 m lighting distance. (b) Optical micrographs of the WDM receiver chip. (c) 40 Gbps and 50 Gpbs eye diagrams of channels 5, 10, 15, 20 and 25 at 0 and –1 V. The modulator eye graphs are also displayed for evaluation. Figure reproduced from: (a) ref.35, Optical Society of America; (b) ref.36, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
Schematic representation of the PDM network.
4-channel VLC network. Figure reproduced from ref.57, SPIE.
The design of an NxN SDM communication network using coherent MIMO digital signal processing. Where MUX/DEMUX represents multiplexer/demultiplexer and Co-Rx signifies Coherent receiver.
Different dissimilarities of FOs for SDM. (a) FO bundle, possibly with compact cladding diameter. (b) Multicore FO with uncoupled cores. (c) Few-mode FO. (d) Coupled-core multicore FO. (e) Multi-mode-multicore FO, in which each core supports more than one mode.
Effective refractive indices of the guided modes versus width of the core width. Inset shows the mode shapes of the fundamental and higher-order modes. Figure reproduced with permission from ref.88, under a Creative Commons Attribution 4.0 International License.
The operation principle of MDM. The scheme is adapted from ref.90.
(a) Manufactured TE0 and TE1 mode MUX circuit. (b) SEM images of a manufactured TE0 and TE1 mode (de)MUX and details of its. (c) Input side. (d) Output side91. (e) Graphical representation of a multimode SDM circuit with two polarizations. (f) Schematic of the circuit and structures of (g) μ-RRs-1, (h) μ-RR-2. Figure reproduced from: (a–d) ref.91, Optica Publishing Group, under the Optica Open Access Publishing Agreement; (e) ref.92, Optical Society of America; (f–h) ref.93, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
(a) Formation of OAM modes with a UCA. (b) Separation of OAM modes with a UCA.
Hybrid MUX/DEMUX techniques combing multiple individual methods.
(a) Graphical pattern of the hybrid MUX/DEMUX containing a bi-directional AWG and a polarization diversity circuit. (b) The magnified image of the PDC joining the two input WGs of the bi-directional AWG. Figure reproduced with permission from ref.104, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
(a) Schematic representation of a silicon hybrid de (multiplexer) for MDM and WDM. (b) SEM image of the manufactured SiN hybrid MDM-WDM device. SEM pictures of the coupling regions between the input WGs and the bus WGs with a designed bus WG width of, (c) 1 μm, (d) 2.25 μm, (e) 3.5 μm. (f) Schematic representation of a hybrid WDM-MDM MUX/DEMUX. Figure reproduced from: (a) ref.124, (b–e)125, Optica Publishing Group, under the Optica Open Access Publishing Agreement; (f) ref.126, Optical Society of America.
Graphical illustration of 10-mode hybrid MUX/DEMUX device for both TE and TM polarizations. Figure reproduced with permission from ref.13, under a Creative Commons Attribution 4.0 InternationalLicense.
Multimode Laguerre-Gauss beams. (a) The DOE phase. (b) The squared modulus of the coefficients in the superposition. (c) The intensity distributions in the focal plane for 5-modes beam (the upper row) and the 6-modes beam (the bottom row). Figure reproduced from ref.154, American Institute of Physics.
Propagation of LP modes superposition in a weakly guiding stepped-index FO (the intensity distribution is taken at different distances z) for (p, q)=(1, 2)+(–2, 1) (top row), (p, q)=(3, 2)+(5, 1) (middle row), (p, q)=(4, 1)+(5, 1) (bottom row). Figure reproduced from ref.189, Pleiades Publishing.
Instantaneous recognition of particular vortex positions of Laguerre–Gaussian beams. (a) The correlation network with a multi-channel DOE. (b) Results of detection (correlation peaks circled in red) in the focal plane. Figure reproduced from ref.192, under a Creative Commons Attribution.
Binary 14-channel DOE for investigating the polarization and phase positions of vortex cylindrically polarized beams. (a) DOE phase. (b) Correspondence of the diffraction orders in the focal plane to the orders of optical vortices198.
(a) The binary phase of the encoded 64-order DOE, matched with LP modes of a step-index FO. (b) The experimentally recorded intensity distribution in the focal plane of the lens when the DOE is illuminated by a plane wave. (c) The arrangement of LP-modes indices