Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127
Citation: Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127

Review Open Access

Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review

More Information
  • Herein, an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which includes wavelength division multiplexing (WDM), polarization division multiplexing (PDM), space division multiplexing (SDM), mode division multiplexing (MDM) and orbital angular momentum multiplexing (OAMM). Multiplexing is a mechanism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the optical links. However, it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers. In this review, we have also included hybrid multiplexing techniques such as WDM-PDM, WDM-MDM and PDM-MDM. It is probable to attainN×Mchannels by utilizingNwavelengths andMguided-modes by simply utilizing hybrid WDM-MDM (de)multiplexers. To the best of our knowledge, this review paper is one of its kind which has highlighted the most prominent and recent signs of progress in multiplexing techniques in one place.
  • 加载中
  • [1] Gnauck AH, Tkach RW, Chraplyvy AR, Li T. High-capacity optical transmission systems. J Lightwave Technol 26, 1032–1045 (2008). doi: 10.1109/JLT.2008.922140

    CrossRef Google Scholar

    [2] Rademacher G, Luís RS, Puttnam BJ, Eriksson TA, Agrell E et al. 159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber. In Proceedings of the Optical Fiber Communication Conference 2018 1–3 (Optica Publishing Group, 2018); http://doi.org/10.1364/OFC.2018.Th4C.4.

    Google Scholar

    [3] Saliba SD, Scholten RE. Linewidths below 100 kHz with external cavity diode lasers. Appl Opt 48, 6961–6966 (2009). doi: 10.1364/AO.48.006961

    CrossRef Google Scholar

    [4] Keaveney J, Hamlyn JW, Adams CS, Hughes IG. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of < 1 MHz. Rev Sci Instrum 87, 095111 (2016). doi: 10.1063/1.4963230

    CrossRef Google Scholar

    [5] Baeuerle B, Heni W, Hoessbacher C, Fedoryshyn Y, Koch U et al. 120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV. Opt Express 27, 16823–16832 (2019). doi: 10.1364/OE.27.016823

    CrossRef Google Scholar

    [6] Hiraki T, Aihara T, Takeda K, Fujii T, Kakitsuka T et al. Membrane InGaAsP Mach-Zehnder modulator with SiN: D waveguides on Si platform. Opt Express 27, 18612–18619 (2019). doi: 10.1364/OE.27.018612

    CrossRef Google Scholar

    [7] Ahmed M. Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys Wave Phen 22, 266–272 (2014). doi: 10.3103/S1541308X14040104

    CrossRef Google Scholar

    [8] Kani J, Iwatsuki K, Imai T. Optical multiplexing technologies for access-area applications. IEEE J Sel Top Quantum Electron 12, 661–668 (2006). doi: 10.1109/JSTQE.2006.876170

    CrossRef Google Scholar

    [9] Bergano NS, Davidson CR. Wavelength division multiplexing in long-haul transmission systems. J. Lightwave Technol 14, 1299–1308 (1996). doi: 10.1109/50.511662

    CrossRef Google Scholar

    [10] Chen ZY, Yan LS, Pan Y, Jiang L, Yi AL et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci Appl 6, e16207 (2017). doi: 10.1038/lsa.2016.207

    CrossRef Google Scholar

    [11] Fazea Y, Mezhuyev V. Selective mode excitation techniques for mode-division multiplexing: a critical review. Opt Fiber Technol 45, 280–288 (2018). doi: 10.1016/j.yofte.2018.08.004

    CrossRef Google Scholar

    [12] Wang SP, Wu H, Zhang M, Dai DX. A 32-channel hybrid wavelength-/mode-division (de) Multiplexer on silicon. IEEE Photonics Technol Lett 30, 1194–1197 (2018). doi: 10.1109/LPT.2018.2839533

    CrossRef Google Scholar

    [13] Jiang WF, Miao JY, Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci Rep 9, 13223 (2019). doi: 10.1038/s41598-019-49763-0

    CrossRef Google Scholar

    [14] Pan TH, Tseng SY. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express 23, 10405–10412 (2015). doi: 10.1364/OE.23.010405

    CrossRef Google Scholar

    [15] Jiang WF. Ultra-compact and fabrication-tolerant mode multiplexer and demultiplexer based on angled silicon waveguides. Opt Commun 425, 141–145 (2018). doi: 10.1016/j.optcom.2018.05.009

    CrossRef Google Scholar

    [16] Li HQ, Wang PJ, Yang TJ, Dai TG, Wang GC et al. Experimental demonstration of a broadband two-mode multi/demultiplexer based on asymmetric Y-junctions. Opt Laser Technol 100, 7–11 (2018). doi: 10.1016/j.optlastec.2017.09.043

    CrossRef Google Scholar

    [17] Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol 30, 2421–2426 (2012). doi: 10.1109/JLT.2012.2199961

    CrossRef Google Scholar

    [18] Dai DX, Wang SP. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front Optoelectron 9, 450–465 (2016). doi: 10.1007/s12200-016-0557-8

    CrossRef Google Scholar

    [19] Li HQ, Li SQ, Yang TJ, Xu JY, Li J et al. Silicon two-mode multi/demultiplexer based on tapered couplers. Optik 176, 518–522 (2019). doi: 10.1016/j.ijleo.2018.09.115

    CrossRef Google Scholar

    [20] Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 50, 629–635 (2020). doi: 10.1070/QEL17276

    CrossRef Google Scholar

    [21] Porfirev AP, Fomchenkov SA, Gridin GE, Khonina SN. Binary diffractive optics for 3D-demultiplexing of OAM beams. J Phys:Conf Ser 1124, 051015 (2018). doi: 10.1088/1742-6596/1124/5/051015

    CrossRef Google Scholar

    [22] Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In Yasin M, Harun SW, Arof H. Recent Progress in Optical Fiber Research. IntechOpen Publisher, Croatia, 2012.

    Google Scholar

    [23] Karpeev SV, Pavelyev VS, Soifer VA, Khonina SN, Duparre M et al. Transverse mode multiplexing by diffractive optical elements. Proc SPIE 5854, 1–12 (2005). doi: 10.1117/12.634547

    CrossRef Google Scholar

    [24] Stark JB, Mitra P, Sengupta A. Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt Fiber Technol 7, 275–288 (2001). doi: 10.1006/ofte.2000.0345

    CrossRef Google Scholar

    [25] Secondini M, Forestieri E. The limits of the nonlinear Shannon limit. In Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (IEEE, 2016). https://doi.org/10.1 364/OFC.2016.Th3D.1

    Google Scholar

    [26] Armstrong J. OFDM for optical communications. J Lightwave Technol 27, 189–204 (2009). doi: 10.1109/JLT.2008.2010061

    CrossRef Google Scholar

    [27] Chow CW, Yeh CH, Wang CH, Wu CL, Chi S et al. Studies of OFDM signal for broadband optical access networks. IEEE J Sel Area Commun 28, 800–807 (2010). doi: 10.1109/JSAC.2010.100805

    CrossRef Google Scholar

    [28] Gunawan WH, Liu Y, Chow CW, Chang YH, Yeh CH. High speed visible light communication using digital power domain multiplexing of orthogonal frequency division multiplexed (OFDM) signals. Photonics 8, 500 (2021). doi: 10.3390/photonics8110500

    CrossRef Google Scholar

    [29] Saito Y, Kishiyama Y, Benjebbour A, Nakamura T, Li AX et al. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 77th Vehicular Technology Conference (VTC Spring) 1–5 (IEEE, 2013);http://doi.org/10.1109/VTCSpring.2013.6692652.

    Google Scholar

    [30] DeLange OE. Wide-band optical communication systems: part II-Frequency-division multiplexing. Proc IEEE 58, 1683–1690 (1970). doi: 10.1109/PROC.1970.7989

    CrossRef Google Scholar

    [31] Nosu K, Ishio H. A design of optical multi/demultiplexers for optical wavelength-division multiplexing transmission. Trans IECE 62-B, 1030–1036 (1979).

    Google Scholar

    [32] Tomlinson WJ. Wavelength multiplexing in multimode optical fibers. Appl Opt 16, 2180–2194 (1977). doi: 10.1364/AO.16.002180

    CrossRef Google Scholar

    [33] Senior JM, Cusworth SD. Wavelength division multiplexing in optical fibre sensor systems and networks: a review. Opt Laser Technol 22, 113–126 (1990). doi: 10.1016/0030-3992(90)90021-U

    CrossRef Google Scholar

    [34] Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application. J Lightwave Technol 2, 448–463 (1984). doi: 10.1109/JLT.1984.1073653

    CrossRef Google Scholar

    [35] Li CY, Lu HH, Tsai WS, Feng CY, Chou CR et al. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser. Opt Lett 45, 6206–6209 (2020). doi: 10.1364/OL.409843

    CrossRef Google Scholar

    [36] Liu Z, Zhang JS, Li XL, Wang LL, Li JG et al. 25×50 Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating. Photonics Res 7, 659–663 (2019). doi: 10.1364/PRJ.7.000659

    CrossRef Google Scholar

    [37] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [38] Goossens JW, Yousefi MI, Jaouën Y, Hafermann H. Polarization-division multiplexing based on the nonlinear Fourier transform. Opt Express 25, 26437–26452 (2017). doi: 10.1364/OE.25.026437

    CrossRef Google Scholar

    [39] Hayee MI, Cardakli MC, Sahin AB, Willner AE. Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme. IEEE Photonics Technol Lett 13, 881–883 (2001). doi: 10.1109/68.935835

    CrossRef Google Scholar

    [40] Hill PM, Olshansky R, Burns WK. Optical polarization division multiplexing at 4Gb/s. IEEE Photonics Technol Lett 4, 500–502 (1992). doi: 10.1109/68.136500

    CrossRef Google Scholar

    [41] Evangelides SG, Mollenauer LF, Gordon JP, Bergano NS. Polarization multiplexing with solitons. J Lightwave Technol 10, 28–35 (1992). doi: 10.1109/50.108732

    CrossRef Google Scholar

    [42] Han Y, Li G. Experimental demonstration of direct-detection quaternary differential polarisation-phase-shift keying with electrical multilevel decision. Electron Lett 42, 109–111 (2006). doi: 10.1049/el:20063534

    CrossRef Google Scholar

    [43] Noe R, Hinz S, Sandel D, Wust F. Crosstalk detection schemes for polarization division multiplex transmission. J Lightwave Technol 19, 1469–1475 (2001). doi: 10.1109/50.956134

    CrossRef Google Scholar

    [44] Coura DJC, Silva JAL, Segatto MEV. A bandwidth scalable OFDM passive optical network for future access network. Photon Netw Commun 18, 409 (2009). doi: 10.1007/s11107-009-0203-0

    CrossRef Google Scholar

    [45] Morant M, Llorente R, Hauden J, Quinlan T, Mottet A et al. Dual-drive LiNbO3 interferometric Mach-Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication systems. Opt Express 19, B452–B458 (2011). doi: 10.1364/OE.19.00B452

    CrossRef Google Scholar

    [46] Qiu HY, Yu H, Hu T, Jiang GM, Shao HF et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express 21, 17904–17911 (2013). doi: 10.1364/OE.21.017904

    CrossRef Google Scholar

    [47] Tan Y, Wu H, Wang SP, Li CL, Dai DX. Silicon-based hybrid demultiplexer for wavelength-and mode-division multiplexing. Opt Lett 43, 1962–1965 (2018). doi: 10.1364/OL.43.001962

    CrossRef Google Scholar

    [48] Sun CL, Yu Y, Chen GY, Zhang XL. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt Lett 41, 3257–3260 (2016). doi: 10.1364/OL.41.003257

    CrossRef Google Scholar

    [49] Guan XW, Ding YH, Frandsen LH. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt Lett 40, 3893–3896 (2015). doi: 10.1364/OL.40.003893

    CrossRef Google Scholar

    [50] Han LS, Kuo BPP, Alic N, Radic S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt Express 26, 14800–14809 (2018). doi: 10.1364/OE.26.014800

    CrossRef Google Scholar

    [51] Zhang Y, He Y, Zhu QM, Qiu CY, Su YK. On-chip silicon photonic 2×2 mode-and polarization-selective switch with low inter-modal crosstalk. Photonics Res 5, 521–526 (2017). doi: 10.1364/PRJ.5.000521

    CrossRef Google Scholar

    [52] Khan LU. Visible light communication: applications, architecture, standardization and research challenges. Digit Commun Netw 3, 78–88 (2017). doi: 10.1016/j.dcan.2016.07.004

    CrossRef Google Scholar

    [53] Vega-Colado C, Arredondo B, Torres JC, López-Fraguas E, Vergaz R et al. An all-organic flexible visible light communication system. Sensors 18, 3045 (2018). doi: 10.3390/s18093045

    CrossRef Google Scholar

    [54] Wang YQ, Yang C, Wang YG, Chi N. Gigabit polarization division multiplexing in visible light communication. Opt Lett 39, 1823–1826 (2014). doi: 10.1364/OL.39.001823

    CrossRef Google Scholar

    [55] Perkins R, Gruev V. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters. Opt Express 18, 25815–25824 (2010). doi: 10.1364/OE.18.025815

    CrossRef Google Scholar

    [56] Thangaraj C, Pownall R, Nikkel P, Yuan GW, Lear KL et al. Fully CMOS-compatible on-chip optical clock distribution and recovery. IEEE Trans Very Scale Integr (VLSI) Syst 18, 1385–1398 (2010). doi: 10.1109/TVLSI.2009.2024206

    CrossRef Google Scholar

    [57] Ivanovich D, Powell SB, Gruev V, Chamberlain RD. Polarization division multiplexing for optical data communications. Proc SPIE 10538, 105381D (2018). doi: 10.1117/12.2290452

    CrossRef Google Scholar

    [58] Kanada T, Franzen DL. Single-mode fiber dispersion measurements using optical sampling with a mode-locked laser diode. Opt Lett 11, 330–332 (1986). doi: 10.1364/OL.11.000330

    CrossRef Google Scholar

    [59] Saitoh K, Koshiba M, Takenaga K, Matsuo S. Crosstalk and core density in uncoupled multicore fibers. IEEE Photonics Technol Lett 24, 1898–1901 (2012). doi: 10.1109/LPT.2012.2217489

    CrossRef Google Scholar

    [60] Macho A, Morant M, Llorente R. Experimental evaluation of nonlinear crosstalk in multi-core fiber. Opt Express 23, 18712–18720 (2015). doi: 10.1364/OE.23.018712

    CrossRef Google Scholar

    [61] Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt Express 19, 16576–16592 (2011). doi: 10.1364/OE.19.016576

    CrossRef Google Scholar

    [62] Sasaki Y, Takenaga K, Aikawa K, Miyamoto Y, Morioka T. Single-mode 37-core fiber with a cladding diameter of 248 μm. In Proceedings of 2017 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2017). https://doi.org/10.1364/OFC.2017.Th1H.2

    Google Scholar

    [63] Abedin KS, Taunay TF, Fishteyn M, DiGiovanni DJ, Supradeepa VR et al. Cladding-pumped erbium-doped multicore fiber amplifier. Opt Express 20, 20191–20200 (2012). doi: 10.1364/OE.20.020191

    CrossRef Google Scholar

    [64] Rademacher G, Luís RS, Puttnam BJ, Ryf R, Furukawa H et al. 93.34 Tbit/s/mode (280 Tbit/s) transmission in a 3-mode graded-index few-mode fiber. In Proceedings of 2018 Optical Fiber Communications Conference and Exposition 1–3 (IEEE, 2018). https://doi.org/10.1364/OFC.2018.W4C.3

    Google Scholar

    [65] Rademacher G, Puttnam BJ, Luís RS, Eriksson TA, Fontaine NK et al. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat Commun 12, 4238 (2021). doi: 10.1038/s41467-021-24409-w

    CrossRef Google Scholar

    [66] Hayashi T, Tamura Y, Hasegawa T, Taru T. Record-low spatial mode dispersion and ultra-low loss coupled multi-core fiber for ultra-long-haul transmission. J Lightwave Technol 35, 450–457 (2017). doi: 10.1109/JLT.2016.2614000

    CrossRef Google Scholar

    [67] van Uden RGH, Correa RA, Lopez EA, Huijskens FM, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865–870 (2014). doi: 10.1038/nphoton.2014.243

    CrossRef Google Scholar

    [68] Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H et al. Dense SDM (12-Core × 3-Mode) transmission over 527 km With 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization. J Lightwave Technol 34, 196–204 (2016). doi: 10.1109/JLT.2015.2463102

    CrossRef Google Scholar

    [69] Puttnam BJ, Rademacher G, Luís RS. Space-division multiplexing for optical fiber communications. Optica 8, 1186–1203 (2021). doi: 10.1364/OPTICA.427631

    CrossRef Google Scholar

    [70] Jiang WF, Hu JZ, Mao SQ, Zhang HY, Zhou LJ et al. Broadband silicon four-mode (de) multiplexer using subwavelength grating-assisted triple-waveguide couplers. J Lightwave Technol 39, 5042–5047 (2021). doi: 10.1109/JLT.2021.3079911

    CrossRef Google Scholar

    [71] He Y, Zhang Y, Zhu QM, An SH, Cao RY et al. Silicon high-order mode (de) multiplexer on single polarization. J Lightwave Technol 36, 5746–5753 (2018). doi: 10.1109/JLT.2018.2878529

    CrossRef Google Scholar

    [72] Butt MA, Khonina SN, Kazanskiy NL. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 30, 292–299 (2020). doi: 10.1080/17455030.2018.1506191

    CrossRef Google Scholar

    [73] Butt MA, Khonina SN, Kazanskiy NL. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens J 20, 1355–1362 (2020). doi: 10.1109/JSEN.2019.2944391

    CrossRef Google Scholar

    [74] Butt MA, Kazanskiy NL. Mode sensitivity analysis of vertically arranged double hybrid plasmonic waveguide. Opt Adv Mater Rapid Commun 14, 385–388 (2020).

    Google Scholar

    [75] Kazanskiy NL, Butt MA. One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices. Photonics Lett Poland 12, 85–87 (2020). doi: 10.4302/plp.v12i3.1044

    CrossRef Google Scholar

    [76] Butt MA, Khonina SN, Kazanskiy NL. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 µm and 3.392 µm wavelength. Appl Opt 59, 7821–7828 (2020). doi: 10.1364/AO.398550

    CrossRef Google Scholar

    [77] Khonina SN, Kazanskiy NL, Butt MA. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens J 20, 8469–8476 (2020). doi: 10.1109/JSEN.2020.2985840

    CrossRef Google Scholar

    [78] Butt MA, Khonina SN, Kazanskiy NL. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys Lett 17, 076201 (2020). doi: 10.1088/1612-202X/ab8faa

    CrossRef Google Scholar

    [79] Kazanskiy NL, Khonina SN, Butt MA. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors 20, 3416 (2020). doi: 10.3390/s20123416

    CrossRef Google Scholar

    [80] Yu F, Yamamoto K, Piao XQ, Yokoyama S. Multimode interference waveguide switch of electro-optic polymer with tapered access waveguides. Phys Procedia 14, 25–28 (2011). doi: 10.1016/j.phpro.2011.05.006

    CrossRef Google Scholar

    [81] Wu XR, Huang CR, Xu K, Shu C, Tsang HK. Mode-division multiplexing for silicon photonic network-on-chip. J Lightwave Technol 35, 3223–3228 (2017). doi: 10.1109/JLT.2017.2677085

    CrossRef Google Scholar

    [82] Luo LW, Gabrielli LH, Lipson M. On-chip mode-division multiplexer. In Proceedings of the CLEO: Science and Innovations 2013 1–2 (Optica Publishing Group, 2013);http://doi.org/10.1364/CLEO_SI.2013.CTh1C.6.

    Google Scholar

    [83] Liu YJ, Xu K, Wang S, Shen WH, Xie HC et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat Commun 10, 3263 (2019). doi: 10.1038/s41467-019-11196-8

    CrossRef Google Scholar

    [84] He Y, An SH, Li XF, Huang YT, Zhang Y et al. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings. In Proceedings of 2021 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2021).https://ieeexplore.ieee.org/document/9489861

    Google Scholar

    [85] Su YK, He Y, Chen HS, Li XY, Li GF. Perspective on mode-division multiplexing. Appl Phys Lett 118, 200502 (2021). doi: 10.1063/5.0046071

    CrossRef Google Scholar

    [86] Ding YH, Ou HY, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technol Lett 25, 648–651 (2013). doi: 10.1109/LPT.2013.2247394

    CrossRef Google Scholar

    [87] Koonen AMJ, Chen HS, van den Boom HPA, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technol Lett 24, 1961–1964 (2012). 88. https://doi.org/10.1109/LPT.2012.2219304

    Google Scholar

    [88] Li CL, Liu DJ, Dai DX. Multimode silicon photonics. Nanophotonics 8, 227–247 (2018).

    Google Scholar

    [89] Dai DX. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In Proceedings of 2012 Asia Communications and Photonics Conference 1–3 (IEEE, 2012). https://ieeexplore.ieee.org/abstract/document/6510982

    Google Scholar

    [90] Binici HI. Controlling light inside a multi-mode fiber by wavefront shaping. (The Graduate School of Natural and Applied Sciences of Middle East Technical University, 2018).http://dx.doi.org/10.13140/RG.2.2.35259.52005

    Google Scholar

    [91] Ding YH, Xu J, Da Ros F, Huang B, Ou HY et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express 21, 10376–10382 (2013). doi: 10.1364/OE.21.010376

    CrossRef Google Scholar

    [92] Dai DX, Wang J, Shi YC. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett 38, 1422–1424 (2013). doi: 10.1364/OL.38.001422

    CrossRef Google Scholar

    [93] Ye MY, Yu Y, Sun CL, Zhang XL. On-chip data exchange for mode division multiplexed signals. Opt Express 24, 528–535 (2016). doi: 10.1364/OE.24.000528

    CrossRef Google Scholar

    [94] Yan Y, Xie GD, Lavery MPJ, Huang H, Ahmed N et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 5, 4876 (2014). doi: 10.1038/ncomms5876

    CrossRef Google Scholar

    [95] Lee D, Sasaki H, Fukumoto H, Hiraga K, Nakagawa T. Orbital angular momentum (OAM) multiplexing: an enabler of a new era of wireless communications. IEICE Trans Commun E100-B, 1044–1063 (2017).

    Google Scholar

    [96] Yan Y, Li L, Zhao Z, Xie GD, Wang Z et al. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. In Proceedings of 2016 IEEE International Conference on Communications (ICC) 1–6 (IEEE, 2016); http://doi.org/10.1109/ICC.2016.7511277.

    Google Scholar

    [97] Mahmouli FE, Walker SD. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wireless Commun Lett 2, 223–226 (2013). doi: 10.1109/WCL.2013.012513.120686

    CrossRef Google Scholar

    [98] Zhang ZF, Zheng SL, Chen YL, Jin XF, Chi H et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system. Sci Rep 6, 25418 (2016). doi: 10.1038/srep25418

    CrossRef Google Scholar

    [99] Mohammadi SM, Daldorff LKS, Bergman JES, Karlsson RL, Thide B et al. Orbital angular momentum in radio-A system study. IEEE Trans Antennas Propag 58, 565–572 (2010). doi: 10.1109/TAP.2009.2037701

    CrossRef Google Scholar

    [100] Cagliero A, De Vita A, Gaffoglio R, Sacco B. A new approach to the link budget concept for an OAM communication link. IEEE Antennas Wireless Propag Lett 15, 568–571 (2015).

    Google Scholar

    [101] Tian H, Liu ZQ, Xi W, Nie GF, Liu L et al. Beam axis detection and alignment for uniform circular array-based orbital angular momentum wireless communication. IET Commun 10, 44–49 (2016). doi: 10.1049/iet-com.2015.0136

    CrossRef Google Scholar

    [102] Yan Y, Li L, Xie GD, Bao CJ, Liao PC et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing. In Proceedings of 2015 IEEE International Conference on Communications (ICC) 1370–1375 (IEEE, 2015);http://doi.org/10.1109/ICC.2015.7248514.

    Google Scholar

    [103] Zheng SL, Hui XN, Jin XF, Chi H, Zhang XM. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans Antennas Wireless Propag Lett 63, 1530–1536 (2015). doi: 10.1109/TAP.2015.2393885

    CrossRef Google Scholar

    [104] Chen ST, Shi YC, He SL, Dai DX. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt Express 23, 12840–12849 (2015). doi: 10.1364/OE.23.012840

    CrossRef Google Scholar

    [105] Aamer M, Gutierrez AM, Brimont A, Vermeulen D, Roelkens G et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonics Technol Lett 24, 2031–2034 (2012). doi: 10.1109/LPT.2012.2218593

    CrossRef Google Scholar

    [106] Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Verheyen P et al. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonics Technol Lett 26, 718–721 (2014). doi: 10.1109/LPT.2014.2303793

    CrossRef Google Scholar

    [107] Butt MA, Khonina SN, Kazanskiy NL. Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study. Waves Random Complex Media 31, 2397–2406 (2021). doi: 10.1080/17455030.2020.1744769

    CrossRef Google Scholar

    [108] Tan Y, Chen ST, Dai DX. Polarization-selective microring resonators. Opt Express 25, 4106–4119 (2017). doi: 10.1364/OE.25.004106

    CrossRef Google Scholar

    [109] Dai DX, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett 41, 2346–2349 (2016). doi: 10.1364/OL.41.002346

    CrossRef Google Scholar

    [110] Tong YY, Zhou W, Wu XR, Tsang HK. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J Quantum Electron 56, 8400107 (2020).

    Google Scholar

    [111] Kuo PC, Tong YY, Chow CW, Tsai JF, Liu Y et al. 4.36 Tbit/s silicon chip-to-chip transmission via few-mode fiber (FMF) using 2D sub-wavelength grating couplers. In Proceedings of the Optical Fiber Communication Conference 2021 (Optica Publishing Group, 2021); http://doi.org/10.1364/OFC.2021.M3D.6.

    Google Scholar

    [112] Zhao NB, Li XY, Li GF, Kahn JM. Capacity limits of spatially multiplexed free-space communication. Nat Photonics 9, 822–826 (2015). doi: 10.1038/nphoton.2015.214

    CrossRef Google Scholar

    [113] Rahmani B, Loterie D, Konstantinou G, Psaltis D, Moser C. Multimode optical fiber transmission with a deep learning network. Light Sci Appl 7, 69 (2018). doi: 10.1038/s41377-018-0074-1

    CrossRef Google Scholar

    [114] Sharkawy A, Shi SY, Prather DW. Multichannel wavelength division multiplexing with photonic crystals. Appl Opt 40, 2247–2252 (2001). doi: 10.1364/AO.40.002247

    CrossRef Google Scholar

    [115] Smajic J, Hafner C, Erni D. On the design of photonic crystal multiplexers. Opt Express 11, 566–571 (2003). doi: 10.1364/OE.11.000566

    CrossRef Google Scholar

    [116] Liu T, Zakharian AR, Fallahi M, Moloney JV, Mansuripur M. Multimode interference-based photonic crystal waveguide power splitter. J Lightwave Technol 22, 2842–2846 (2004). doi: 10.1109/JLT.2004.834479

    CrossRef Google Scholar

    [117] Hosseini A, Xu XC, Subbaraman H, Lin CY, Rahimi S et al. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator. Opt Express 20, 12318–12325 (2012). doi: 10.1364/OE.20.012318

    CrossRef Google Scholar

    [118] Shi JX, Pollard ME, Angeles CA, Chen RQ, Gates JC et al. Photonic crystal and quasi-crystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide. Sci Rep 7, 1812 (2017). doi: 10.1038/s41598-017-01842-w

    CrossRef Google Scholar

    [119] Balasaraswathi M, Singh M, Malhotra J, Dhasarathan V. A high-speed radio-over-free-space optics link using wavelength division multiplexing-mode division multiplexing-multibeam technique. Comput Electr Eng 87, 106779 (2020). doi: 10.1016/j.compeleceng.2020.106779

    CrossRef Google Scholar

    [120] Zhou ZL, Li EK, Zhang HG. Performance analysis of duobinary and AMI techniques using LG modes in hybrid MDM-WDM-FSO transmission system. J Opt Commun , 1–7 (2019).

    Google Scholar

    [121] Amphawan A, Fazea Y. Multidiameter optical ring and Hermite-Gaussian vortices for wavelength division multiplexing-mode division multiplexing. Opt Eng 55, 106109 (2016). doi: 10.1117/1.OE.55.10.106109

    CrossRef Google Scholar

    [122] Wang SP, Feng XL, Gao SM, Shi YC, Dai TG et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett 42, 2802–2805 (2017). doi: 10.1364/OL.42.002802

    CrossRef Google Scholar

    [123] Gao JT, Nazemosadat E, Yang Y, Fu SN, Tang M et al. Elliptical-core highly nonlinear few-mode fiber based OXC for WDM-MDM networks. IEEE J Sel Top Quant Electron 27, 7600511 (2021).

    Google Scholar

    [124] Mulugeta T, Rasras M. Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing. Opt Express 23, 943–949 (2015). doi: 10.1364/OE.23.000943

    CrossRef Google Scholar

    [125] Yang YD, Li Y, Huang YZ, Poon AW. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express 22, 22172–22183 (2014). doi: 10.1364/OE.22.022172

    CrossRef Google Scholar

    [126] Nawwar OM, Shalaby HMH, Pokharel RK. Photonic crystal-based compact hybrid WDM/MDM (De)multiplexer for SOI platforms. Opt Lett 43, 4176–4179 (2018). doi: 10.1364/OL.43.004176

    CrossRef Google Scholar

    [127] He Y, Zhang Y, Wang HW, Sun L, Su YK. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing. Opt Lett 45, 2846–2849 (2020). doi: 10.1364/OL.390015

    CrossRef Google Scholar

    [128] Dai DX. Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics 2014 (Optica Publishing Group, 2014); http://doi.org/10.1364/IPRSN.2014.IM2A.2.

    Google Scholar

    [129] Wang J, Chen PX, Chen ST, Shi YC, Dai DX. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express 22, 12799–12807 (2014). doi: 10.1364/OE.22.012799

    CrossRef Google Scholar

    [130] Kakati D, Sonkar RK. A 2×320 Gbps hybrid PDM-MDM-OFDM system for high-speed terrestrial FSO communication. In Proceedings of the 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020) C5F_3 (Optica Publishing Group, 2020); http://doi.org/10.1364/CLEOPR.2020.C5F_3.

    Google Scholar

    [131] Minz M, Mishra D, Sonkar RK, Khan MM. Grating-assisted MDM-PDM hybrid (de)multiplexer for optical interconnect applications. Proc SPIE 11193, 111930C (2019).

    Google Scholar

    [132] Xu LH, Wang Y, El-Fiky E, Mao D, Kumar A et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform. J Lightwave Technol 37, 1231–1240 (2019). doi: 10.1109/JLT.2018.2890718

    CrossRef Google Scholar

    [133] Wang Y, Ma ML, Yun H, Lu ZQ, Wang X et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photonics J 8, 7805709 (2016).

    Google Scholar

    [134] Sun CL, Yu Y, Ye MY, Chen GY, Zhang XL. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci Rep 6, 38494 (2016). doi: 10.1038/srep38494

    CrossRef Google Scholar

    [135] Lee SY, Darmawan S, Lee CW, Chin MK. Transformation between directional couplers and multi-mode interferometers based on ridge waveguides. Opt Express 12, 3079–3085 (2004). doi: 10.1364/OPEX.12.003079

    CrossRef Google Scholar

    [136] Chang WJ, Lu LLZ, Ren XS, Li DY, Pan ZP et al. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt Express 26, 8162–8170 (2018). doi: 10.1364/OE.26.008162

    CrossRef Google Scholar

    [137] Sun Y, Xiong YL, Winnie NY. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett 41, 3743–3746 (2016). doi: 10.1364/OL.41.003743

    CrossRef Google Scholar

    [138] Shalaby HMH. Bi-directional coupler as a mode-division multiplexer/demultiplexer. J Lightwave Technol 34, 3633–3640 (2016). doi: 10.1109/JLT.2016.2580561

    CrossRef Google Scholar

    [139] Liu L. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt Express 23, 12135–12143 (2015). doi: 10.1364/OE.23.012135

    CrossRef Google Scholar

    [140] Yu ZJ, Tong YY, Tsang HK, Sun XK. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun 11, 2602 (2020). doi: 10.1038/s41467-020-15358-x

    CrossRef Google Scholar

    [141] Nguyen VH, Kim IK, Seok TJ. Silicon photonic mode-division reconfigurable optical add/drop multiplexers with mode-selective integrated MEMS switches. Photonics 7, 80 (2020). doi: 10.3390/photonics7040080

    CrossRef Google Scholar

    [142] Wei YH, Zhang M, Dai DX. Multichannel mode-selective silicon photonic add/drop multiplexer with phase change material. J Opt Soc Am B 37, 3341–3350 (2020). doi: 10.1364/JOSAB.400897

    CrossRef Google Scholar

    [143] González-Andrade D, Dias A, Wangüemert-Pérez JG, Ortega-Moñux A, Molina-Fernández Í et al. Experimental demonstration of a broadband mode converter and multiplexer based on subwavelength grating waveguides. Opt Laser Technol 129, 106297 (2020). doi: 10.1016/j.optlastec.2020.106297

    CrossRef Google Scholar

    [144] Driscoll JB, Grote RR, Souhan B, Dadap JI, Lu M et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett 38, 1854–1856 (2013). doi: 10.1364/OL.38.001854

    CrossRef Google Scholar

    [145] Xing JJ, Li ZY, Xiao X, Yu JZ, Yu YD. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett 38, 3468–3470 (2013). doi: 10.1364/OL.38.003468

    CrossRef Google Scholar

    [146] Mehrabi K, Zarifkar A, Miri M. Silicon-based dual-mode polarization beam splitter for hybrid mode/polarization-division-multiplexed systems. Opt Commun 479, 126474 (2021). doi: 10.1016/j.optcom.2020.126474

    CrossRef Google Scholar

    [147] Manimaraboopathy M, Kumar GAS, Mohanraj J, Valliammai M. Realization of all-optical multiplexer-demultiplexer in mid-IR wavelengths using triple-core photonic quasi-crystal fiber. Opt Commun 481, 126556 (2021). doi: 10.1016/j.optcom.2020.126556

    CrossRef Google Scholar

    [148] Jiang WF, Cheng FY, Xu J, Wan HD. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B 35, 2532–2540 (2018). doi: 10.1364/JOSAB.35.002532

    CrossRef Google Scholar

    [149] Kaushalram A, Hegde G, Talabattula S. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides. Sci Rep 10, 16692 (2020). doi: 10.1038/s41598-020-73936-x

    CrossRef Google Scholar

    [150] Chen GFR, Choi JW, Sahin E, Ng DKT, Tan DTH. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride. Opt Express 27, 23549–23557 (2019). doi: 10.1364/OE.27.023549

    CrossRef Google Scholar

    [151] Luo LW, Ophir N, Chen CP, Gabrielli LH, Poitras CB et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun 5, 3069 (2014). doi: 10.1038/ncomms4069

    CrossRef Google Scholar

    [152] Han LS, Liang S, Xu JJ, Qiao LJ, Zhu HL et al. Simultaneous wavelength-and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photonics J 8, 7903510 (2016).

    Google Scholar

    [153] Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode hermite-gaussian beams. Tech Phys Lett 25, 489–491 (1999). doi: 10.1134/1.1262525

    CrossRef Google Scholar

    [154] Kotlyar VV, Soifer VA, Khonina SN. Rotation of multimode Gauss-Laguerre light beams in free space. Tech Phys Lett 23, 657–658 (1997). doi: 10.1134/1.1261648

    CrossRef Google Scholar

    [155] Kotlyar VV, Soifer VA, Khonina SN. Rotation of multimodal Gauss-Laguerre light beams in free space and in a fiber. Opt Lasers Eng 29, 343–350 (1998). doi: 10.1016/S0143-8166(97)00121-8

    CrossRef Google Scholar

    [156] Lyubopytov VS, Tlyavlin AZ, Sultanov AK, Bagmanov VK, Khonina SN et al. Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling. Comput Opt 37, 352–359 (2013). doi: 10.18287/0134-2452-2013-37-3-352-359

    CrossRef Google Scholar

    [157] Kotlyar VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by means of diffractive optics. J Mod Opt 45, 1495–1506 (1998). doi: 10.1080/09500349808230644

    CrossRef Google Scholar

    [158] Khonina SN, Kotlyar VV, Soifer VA, Wang YX, Zhao DZ. Decomposition of a coherent light field using a phase Zernike filter. Proc SPIE 3573, 550–553 (1998). doi: 10.1117/12.324588

    CrossRef Google Scholar

    [159] Khonina SN, Almazov AA. Design of multichannel phase spatial filter for selection of Gauss-Laguerre laser modes. Proc SPIE 4705, 30–39 (2002). doi: 10.1117/12.469021

    CrossRef Google Scholar

    [160] Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 9807, 98070E (2016).

    Google Scholar

    [161] Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 58, 8227–8236 (2019). doi: 10.1364/AO.58.008227

    CrossRef Google Scholar

    [162] Khonina SN, Karpeev SV, Porfirev AP. Wavefront aberration sensor based on a multichannel diffractive optical element. Sensors 20, 3850 (2020). doi: 10.3390/s20143850

    CrossRef Google Scholar

    [163] Khonina SN, Kotylar VV, Soifer VA. Diffraction computation of ‘focusator’ into longitudinal segment and multifocal lens. Proc SPIE 1780, 17800J (1993).

    Google Scholar

    [164] Kotlyar VV, Khonina SN, Soifer VA. Iterative calculation of diffractive optical elements focusing into a three- dimensional domain and onto the surface of the body of rotation. J Mod Opt 43, 1509–1524 (1996). doi: 10.1080/09500349608232822

    CrossRef Google Scholar

    [165] Kotlyar VV, Khonina SN, Soifer VA. Calculation of phase formers of non-diffracting images and a set of concentric rings. Optik 102, 45–50 (1996).

    Google Scholar

    [166] Khonina SN, Kotlyar VV, Lushpin VV, Soifer VA. A method for design of composite DOEs for the generation of letter image. Opt Mem Neutral Networks 6, 213–220 (1997).

    Google Scholar

    [167] Kotlyar VV, Khonina SN. Method for design of DOE for the generation of contour images. Proc SPIE 3348, 48–55 (1998). doi: 10.1117/12.302508

    CrossRef Google Scholar

    [168] Porfirev AP, Khonina SN. Simple method for efficient reconfigurable optical vortex beam splitting. Opt Express 25, 18722–18735 (2017). doi: 10.1364/OE.25.018722

    CrossRef Google Scholar

    [169] Porfirev A, Khonina S, Azizian-Kalandaragh Y, Kirilenko M. Efficient generation of arrays of closed-packed high-quality light rings. Photonics Nanostruct-Fundam Appl 37, 100736 (2019). doi: 10.1016/j.photonics.2019.100736

    CrossRef Google Scholar

    [170] Porfirev AP, Khonina SN. Generation of closed-packed optical vortex beams using two-level pure-phase diffractive multiplexer. AIP Conf Proc 1874, 040042 (2017).

    Google Scholar

    [171] Kudryashov SI, Danilov PA, Porfirev AP, Saraeva IN, Nguyen THT et al. High-throughput micropatterning of plasmonic surfaces by multiplexed femtosecond laser pulses for advanced IR-sensing applications. Appl Surf Sci 484, 948–956 (2019). doi: 10.1016/j.apsusc.2019.04.048

    CrossRef Google Scholar

    [172] Pavlov D, Gurbatov S, Kudryashov SI, Danilov PA, Porfirev AP et al. 10-million-elements-per-second printing of infrared-resonant plasmonic arrays by multiplexed laser pulses. Opt Lett 44, 283–286 (2019). doi: 10.1364/OL.44.000283

    CrossRef Google Scholar

    [173] Pavlov D, Porfirev A, Khonina S, Pan L, Kudryashov SI et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption. Appl Surf Sci 541, 148602 (2021). doi: 10.1016/j.apsusc.2020.148602

    CrossRef Google Scholar

    [174] Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: new functions and applications. Sensors 21, 6690 (2021). doi: 10.3390/s21196690

    CrossRef Google Scholar

    [175] Wang F, Liu XL, Cai YJ. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Prog Electromagn Res 150, 123–143 (2015). doi: 10.2528/PIER15010802

    CrossRef Google Scholar

    [176] Korotkova O. Random Light Beams: Theory and Applications (CRC Press, Boca Raton, 2013).

    Google Scholar

    [177] Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195

    CrossRef Google Scholar

    [178] Eyyuboğlu HT. Propagation of higher order Bessel-Gaussian beams in turbulence. Appl Phys B 88, 259–265 (2007). doi: 10.1007/s00340-007-2707-6

    CrossRef Google Scholar

    [179] Soifer V, Korotkova O, Khonina SN, Shchepakina E. Vortex beams in turbulent media: review. Comput Opt 40, 605–624 (2016). doi: 10.18287/2412-6179-2016-40-5-605-624

    CrossRef Google Scholar

    [180] Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 56, E8–E15 (2017). doi: 10.1364/AO.56.0000E8

    CrossRef Google Scholar

    [181] Zhou P, Wang XL, Ma YX, Ma HT, Xu XJ et al. Propagation property of a nonuniformly polarized beam array in turbulent atmosphere. Appl Opt 50, 1234–1239 (2011). doi: 10.1364/AO.50.001234

    CrossRef Google Scholar

    [182] Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 40, 4887–4890 (2015). doi: 10.1364/OL.40.004887

    CrossRef Google Scholar

    [183] Khonina SN, Kotlyar VV, Soifer VA, Lautanen J, Honkanen M et al. Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 110, 137–144 (1999).

    Google Scholar

    [184] Dubois F, Emplit P, Hugon O. Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask. Opt Lett 19, 433–435 (1994). doi: 10.1364/OL.19.000433

    CrossRef Google Scholar

    [185] Karpeev SV, Pavelyev VS, Duparre M, Luedge B, Rockstuhl C et al. DOE-aided analysis and generation of transverse coherent light modes in a stepped-index optical fiber. Opt Mem Neutral Networks (Inf Opt) 12, 27–34 (2003).

    Google Scholar

    [186] Khonina SN, Striletz AS, Kovalev AA, Kotlyar VV. Propagation of laser vortex beams in a parabolic optical fiber. Proc SPIE 7523, 75230B (2010).

    Google Scholar

    [187] Ye JF, Li Y, Han YH, Deng D, Guo ZY et al. Excitation and separation of vortex modes in twisted air-core fiber. Opt Express 24, 8310–8316 (2016). doi: 10.1364/OE.24.008310

    CrossRef Google Scholar

    [188] Karpeev SV, Pavelyev VS, Khonina SN, Kazanskiy NL, Gavrilov AV et al. Fibre sensors based on transverse mode selection. J Mod Opt 54, 833–844 (2007). doi: 10.1080/09500340601066125

    CrossRef Google Scholar

    [189] Khonina SN, Volotovsky SG. Self-reproduction of multimode laser fields in weakly guiding stepped-index fibers. Opt Mem Neutral Networks 16, 167–177 (2007). doi: 10.3103/S1060992X07030071

    CrossRef Google Scholar

    [190] Karpeev S, Khonina SN. Experimental excitation and detection of angular harmonics in a step-index optical fiber. Opt Mem Neutral Networks 16, 295–300 (2007). doi: 10.3103/S1060992X07040133

    CrossRef Google Scholar

    [191] Bozinovic N, Yue Y, Ren YX, Tur M, Kristensen P et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [192] Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 105, 68–74 (2018). doi: 10.1016/j.optlaseng.2018.01.006

    CrossRef Google Scholar

    [193] Moreno I, Davis JA, Ruiz I, Cottrell DM. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18, 7173–7183 (2010). doi: 10.1364/OE.18.007173

    CrossRef Google Scholar

    [194] Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Opt Express 23, 17845–17859 (2015). doi: 10.1364/OE.23.017845

    CrossRef Google Scholar

    [195] Fu SY, Zhang SK, Wang TL, Gao CQ. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Opt Express 24, 18486–18491 (2016). doi: 10.1364/OE.24.018486

    CrossRef Google Scholar

    [196] Moreno I, Davis JA, Badham K, Sánchez-López MM, Holland JE et al. Vector beam polarization state spectrum analyzer. Sci Rep 7, 2216 (2017). doi: 10.1038/s41598-017-02328-5

    CrossRef Google Scholar

    [197] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM. Opt Express 25, 25697–25706 (2017). doi: 10.1364/OE.25.025697

    CrossRef Google Scholar

    [198] Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of non-uniformly polarized laser beams with singular phase structures. Opt Express 27, 18484–18492 (2019). doi: 10.1364/OE.27.018484

    CrossRef Google Scholar

    [199] Huang H, Xie GD, Yan Y, Ahmed N, Ren YX et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt Lett 39, 197–200 (2014). doi: 10.1364/OL.39.000197

    CrossRef Google Scholar

    [200] Zhu XM, Kahn JM. Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 50, 1293–1300 (2002). doi: 10.1109/TCOMM.2002.800829

    CrossRef Google Scholar

    [201] Cai Y, Chen Y, Eyyuboğlu HT, Baykal Y. Propagation of laser array beams in a turbulent atmosphere. Appl Phys B 88, 467–475 (2007). doi: 10.1007/s00340-007-2680-0

    CrossRef Google Scholar

    [202] Raddatz L, White IH, Cunningham DG, Nowell MC. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links. J Lightwave Technol 16, 324–331 (1998). doi: 10.1109/50.661357

    CrossRef Google Scholar

    [203] Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber. J Lightwave Technol 30, 658–665 (2012). doi: 10.1109/JLT.2011.2180509

    CrossRef Google Scholar

    [204] Li SH, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci Rep 4, 3853 (2014).

    Google Scholar

    [205] Deng D, Li Y, Zhao H, Han YH, Ye J F et al. High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber. J Opt 21, 055601 (2019). doi: 10.1088/2040-8986/ab0fe7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(1)

Article Metrics

Article views(24585) PDF downloads(4087) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint