Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123
Citation: Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

Review Open Access

An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities

More Information
  • Augmented reality (AR) and virtual reality (VR) are two novel display technologies that are under updates. The essential feature of AR/VR is the full-color display that requires high pixel densities. To generate three-color pixels, the fluorescent color conversion layer inevitably includes green and red pixels. To fabricate such sort of display kits, inkjet printing is a promising way to position the color conversion layers. In this review article, the progress of AR/VR technologies is first reviewed, and in succession, the state of the art of inkjet printing, as well as two key issues — the optimization of ink and the reduction of coffee-ring effects, are introduced. Finally, some potential problems associated with the color converting layer are highlighted.
  • 加载中
  • [1] Soohoo S, Torchia M, Srivastava R, Cong M, Dimitrov L et al. IDC’s worldwide augmented reality and virtual reality spending guide taxonomy, 2020: release V2.https://www.idc.com/getdoc.jsp?containerId=US47062820.

    Google Scholar

    [2] Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light:Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1

    CrossRef Google Scholar

    [3] Joo WJ, Kyoung J, Esfandyarpour M, Lee SH, Koo H et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459–463 (2020). doi: 10.1126/science.abc8530

    CrossRef Google Scholar

    [4] Gou FW, Chen HW, Li MC, Lee SL, Wu ST. Motion-blur-free LCD for high-resolution virtual reality displays. J Soc Inf Dis 26, 223–228 (2018). doi: 10.1002/jsid.662

    CrossRef Google Scholar

    [5] Huang Y, Liao E, Chen R, Wu ST. Liquid-crystal-on-silicon for augmented reality displays. Appl Sci 8, 2366 (2018). doi: 10.3390/app8122366

    CrossRef Google Scholar

    [6] Lee JH, Cheng IC, Hua H, Wu ST. Introduction to Flat Panel Displays 2nd ed (John Wiley & Sons, Hoboken, 2020).

    Google Scholar

    [7] Qi LH, Zhang X, Chong WC, Li PA, Lau KM. 848 PPI high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt Express 29, 10580–10591 (2021). doi: 10.1364/OE.419877

    CrossRef Google Scholar

    [8] Wu YF, Ma JS, Su P, Zhang LJ, Xia BZ. Full-color realization of micro-LED displays. Nanomaterials 10, 2482 (2020). doi: 10.3390/nano10122482

    CrossRef Google Scholar

    [9] Kwak BC, Kwon OK. A 2822-ppi resolution pixel circuit with high luminance uniformity for OLED microdisplays. J Dis Technol 12, 1083–1088 (2016). doi: 10.1109/JDT.2016.2593048

    CrossRef Google Scholar

    [10] Motoyama Y, Sugiyama K, Tanaka H, Tsuchioka H, Matsusaki K et al. High-efficiency OLED microdisplay with microlens array. J Soc Inf Dis 27, 354–360 (2019). doi: 10.1002/jsid.784

    CrossRef Google Scholar

    [11] Vieri C, Lee G, Balram N, Jung SH, Yang JY et al. An 18 megapixel 4.3" 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays. J Soc Inf Dis 26, 314–324 (2018). doi: 10.1002/jsid.658

    CrossRef Google Scholar

    [12] Moverio BT-40 smart glasses with USB type-C connectivity.https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-40-Smart-Glasses-with-USB-Type-C-Connectivity-/p/V11H969020.

    Google Scholar

    [13] Wu TZ, Sher CW, Lin Y, Lee CF, Liang SJ et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci 8, 1557 (2018). doi: 10.3390/app8091557

    CrossRef Google Scholar

    [14] Lin JY, Jiang HX. Development of microLED. Appl Phys Lett 116, 100502 (2020). doi: 10.1063/1.5145201

    CrossRef Google Scholar

    [15] Chen SWH, Shen CC, Wu TZ, Liao ZY, Chen LF et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [16] Han HV, Lin HY, Lin CC, Chong WC, Li JR et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express 23, 32504–32515 (2015). doi: 10.1364/OE.23.032504

    CrossRef Google Scholar

    [17] Jiang CB, Zhong ZM, Liu BQ, He ZW, Zou JH et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl Mater Interfaces 8, 26162–26168 (2016). doi: 10.1021/acsami.6b08679

    CrossRef Google Scholar

    [18] Shi SC, Bai WH, Xuan TT, Zhou TL, Dong GY et al. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 5, 2000889 (2021). doi: 10.1002/smtd.202000889

    CrossRef Google Scholar

    [19] Zhu MH, Duan YQ, Liu N, Li HG, Li JH et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv Funct Mater 29, 1903294 (2019). doi: 10.1002/adfm.201903294

    CrossRef Google Scholar

    [20] Wilkinson NJ, Smith MAA, Kay RW, Harris RA. A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing. Int J Adv Manuf Technol 105, 4599–4619 (2019). doi: 10.1007/s00170-019-03438-2

    CrossRef Google Scholar

    [21] Chen G, Gu Y, Tsang H, Hines DR, Das S. The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater 20, 1701084 (2018). doi: 10.1002/adem.201701084

    CrossRef Google Scholar

    [22] Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11, 4237–4266 (2015). doi: 10.1002/smll.201500593

    CrossRef Google Scholar

    [23] Huang QJ, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv Mater Technol 4, 1800546 (2019). doi: 10.1002/admt.201800546

    CrossRef Google Scholar

    [24] Laurila MM. Super inkjet Printed redistribution layer for a MEMS device (Tampere University of Technology, Tampere, 2015).

    Google Scholar

    [25] Jin SX, Li J, Li JZ, Lin JY, Jiang HX. GaN microdisk light emitting diodes. Appl Phys Lett 76, 631–633 (2000). doi: 10.1063/1.125841

    CrossRef Google Scholar

    [26] Liu ZJ, Zhang K, Liu YB, Yan SW, Kwok HS et al. Fully multi-functional GaN-based micro-LEDs for 2500 PPI micro-displays, temperature sensing, light energy harvesting, and light detection. 2018 IEEE International Electron Devices Meeting (IEDM) 38.1. 1–38.1. 4 (IEEE, 2018);http://doi.org/10.1109/IEDM.2018.8614692.

    Google Scholar

    [27] Zhang L, Ou F, Chong WC, Chen YJ, Li QM. Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. J Soc Inf Dis 26, 137–145 (2018). doi: 10.1002/jsid.649

    CrossRef Google Scholar

    [28] Seong J, Jang J, Lee J, Lee M. CMOS backplane pixel circuit with leakage and voltage drop compensation for an micro-LED display achieving 5000 PPI or higher. IEEE Access 8, 49467–49476 (2020). doi: 10.1109/ACCESS.2020.2979883

    CrossRef Google Scholar

    [29] Park J, Choi JH, Kong K, Han JH, Park JH et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat Photonics 15, 449–455 (2021). doi: 10.1038/s41566-021-00783-1

    CrossRef Google Scholar

    [30] Lee YH, Zhan T, Wu ST. Prospects and challenges in augmented reality displays. Virtual Real Intell Hardw 1, 10–20 (2019). doi: 10.3724/SP.J.2096-5796.2018.0009

    CrossRef Google Scholar

    [31] Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004). doi: 10.1038/nature02571

    CrossRef Google Scholar

    [32] Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021).

    Google Scholar

    [33] Zhuang Z, Guo X, Liu B, Hu FR, Li Y et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26, 36–43 (2016). doi: 10.1002/adfm.201502870

    CrossRef Google Scholar

    [34] Zhao JL, Bardecker JA, Munro AM, Liu MS, Niu YH et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett 6, 463–467 (2006). doi: 10.1021/nl052417e

    CrossRef Google Scholar

    [35] Prins F, Sumitro A, Weidman MC, Tisdale WA. Spatially resolved energy transfer in patterned colloidal quantum dot heterostructures. ACS Appl Mater Interfaces 6, 3111–3114 (2014). doi: 10.1021/am500197n

    CrossRef Google Scholar

    [36] Cadusch JJ, Panchenko E, Kirkwood N, James TD, Gibson BC et al. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays. Nanoscale 7, 13816–13821 (2015). doi: 10.1039/C5NR04042F

    CrossRef Google Scholar

    [37] Lin SY, Tan GJ, Yu JH, Chen EG, Weng YL et al. Multi-primary-color quantum-dot down-converting films for display applications. Opt Express 27, 28480–28493 (2019). doi: 10.1364/OE.27.028480

    CrossRef Google Scholar

    [38] Liu Y, Han F, Li FS, Zhao Y, Chen MS et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat Commun 10, 2409 (2019). doi: 10.1038/s41467-019-10406-7

    CrossRef Google Scholar

    [39] Bao B, Jiang JK, Li FY, Zhang PC, Chen SR et al. Fabrication of patterned concave microstructures by inkjet imprinting. Adv Funct Mater 25, 3286–3294 (2015). doi: 10.1002/adfm.201500908

    CrossRef Google Scholar

    [40] Bao B, Li MZ, Li Y, Jiang JK, Gu ZK et al. Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small 11, 1649–1654 (2015). doi: 10.1002/smll.201403005

    CrossRef Google Scholar

    [41] Lin HY, Sher CW, Hsieh DH, Chen XY, Chen HMP et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res 5, 411–416 (2017). doi: 10.1364/PRJ.5.000411

    CrossRef Google Scholar

    [42] Ho SJ, Hsu HC, Yeh CW, Chen HS. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl Mater Interfaces 12, 33346–33351 (2020). doi: 10.1021/acsami.0c05646

    CrossRef Google Scholar

    [43] Duan M, Feng ZY, Wu YW, Yin YM, Hu ZP et al. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv Mater Technol 4, 1900779 (2019). doi: 10.1002/admt.201900779

    CrossRef Google Scholar

    [44] Lee SY, Lee G, Kim DY, Jang SH, Choi I et al. Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photonics 6, 056104 (2021). doi: 10.1063/5.0044284

    CrossRef Google Scholar

    [45] Yin YM, Hu ZP, Ali MU, Duan M, Gao L et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol 5, 2000251 (2020). doi: 10.1002/admt.202000251

    CrossRef Google Scholar

    [46] Hu ZP, Yin YM, Ali MU, Peng WX, Zhang SJ et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 12, 2103–2110 (2020). doi: 10.1039/C9NR09086J

    CrossRef Google Scholar

    [47] Mathies F, List-Kratochvil EJW, Unger EL. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol 8, 1900991 (2020). doi: 10.1002/ente.201900991

    CrossRef Google Scholar

    [48] Liu R, Ding HY, Lin J, Shen FP, Cui Z et al. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology 23, 505301 (2012). doi: 10.1088/0957-4484/23/50/505301

    CrossRef Google Scholar

    [49] Tsuji H, Nakata M, Nakajima Y, Takei T, Fujisaki Y et al. Development of back-channel etched In-W-Zn-O thin-film transistors. J Dis Technol 12, 228–231 (2016). doi: 10.1109/JDT.2015.2445321

    CrossRef Google Scholar

    [50] Murata K, Masuda K. Super inkjet printer technology and its properties. Convertech e-Print 1, 108–111 (2011).

    Google Scholar

    [51] Xuan TT, Shi SC, Wang L, Kuo HC, Xie RJ. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J Phys Chem Lett 11, 5184–5191 (2020). doi: 10.1021/acs.jpclett.0c01451

    CrossRef Google Scholar

    [52] Derby B. Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc 31, 2543–2550 (2011). doi: 10.1016/j.jeurceramsoc.2011.01.016

    CrossRef Google Scholar

    [53] Meixner RM, Cibis D, Krueger K, Goebel H. Characterization of polymer inks for drop-on-demand printing systems. Microsyst Technol 14, 1137–1142 (2008). doi: 10.1007/s00542-008-0639-7

    CrossRef Google Scholar

    [54] Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir 25, 2629–2635 (2009). doi: 10.1021/la900059m

    CrossRef Google Scholar

    [55] Giuri A, Saleh E, Listorti A, Colella S, Rizzo A et al. Rheological tunability of perovskite precursor solutions: from spin coating to inkjet printing process. Nanomaterials 9, 582 (2019). doi: 10.3390/nano9040582

    CrossRef Google Scholar

    [56] Nallan HC, Sadie JA, Kitsomboonloha R, Volkman SK, Subramanian V. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir 30, 13470–13477 (2014). doi: 10.1021/la502903y

    CrossRef Google Scholar

    [57] Chen M, Xie LM, Wei CT, Yi YQQ, Chen XL et al. High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Res 14, 4125–4131 (2021). doi: 10.1007/s12274-021-3352-9

    CrossRef Google Scholar

    [58] Roh H, Ko D, Shin DY, Chang JH, Hahm D et al. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot-polymer composites. Adv Opt Mater 9, 2002129 (2021). doi: 10.1002/adom.202002129

    CrossRef Google Scholar

    [59] Jiang CB, Mu L, Zou JH, He ZW, Zhong ZJ et al. Full-color quantum dots active matrix display fabricated by ink-jet printing. Sci China Chem 60, 1349–1355 (2017). doi: 10.1007/s11426-017-9087-y

    CrossRef Google Scholar

    [60] Yang PH, Zhang L, Kang DJ, Strahl R, Kraus T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv Opt Mater 8, 1901429 (2020). doi: 10.1002/adom.201901429

    CrossRef Google Scholar

    [61] Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J Mater Chem A 4, 19207–19213 (2016). doi: 10.1039/C6TA07972E

    CrossRef Google Scholar

    [62] Gu ZK, Wang K, Li HZ, Gao M, Li LH et al. Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 13, 1603217 (2017). doi: 10.1002/smll.201603217

    CrossRef Google Scholar

    [63] Li PW, Liang C, Bao B, Li YN, Hu XT et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy 46, 203–211 (2018). doi: 10.1016/j.nanoen.2018.01.049

    CrossRef Google Scholar

    [64] YousefiAmin A, Killilea NA, Sytnyk M, Maisch P, Tam KC et al. Fully printed infrared photodetectors from PbS nanocrystals with perovskite ligands. ACS Nano 13, 2389–2397 (2019).

    Google Scholar

    [65] Wong YC, Wu WB, Wang T, Ng JDA, Khoo KH et al. Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes. Adv Mater 31, 1901247 (2019).

    Google Scholar

    [66] Choi S, Lee SY, Kim DY, Park HK, Ko MJ et al. The synthesis and characterisation of the highly stable perovskite nano crystals and their application to ink-jet printed colour conversion layers. J Indust Eng Chem 85, 226–239 (2020). doi: 10.1016/j.jiec.2020.02.005

    CrossRef Google Scholar

    [67] Liu Y, Li FS, Veeramalai CP, Chen W, Guo TL et al. Inkjet-printed photodetector arrays based on hybrid perovskite CH3NH3PbI3 microwires. ACS Appl Mater Interfaces 9, 11662–11668 (2017). doi: 10.1021/acsami.7b01379

    CrossRef Google Scholar

    [68] Liu Y, Li FS, Qiu LC, Yang KY, Li QQ et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13, 2042–2049 (2019).

    Google Scholar

    [69] Shi LF, Meng LH, Jiang F, Ge Y, Li F et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv Funct Mater 29, 1903648 (2019). doi: 10.1002/adfm.201903648

    CrossRef Google Scholar

    [70] Zou WH, Yu HB, Zhou PL, Zhong Y, Wang YC et al. High-resolution additive direct writing of metal micro/nanostructures by electrohydrodynamic jet printing. Appl Surf Sci 543, 148800 (2021). doi: 10.1016/j.apsusc.2020.148800

    CrossRef Google Scholar

    [71] Li HG, Duan YQ, Shao ZL, Zhang GN, Li HY et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv Mater Technol 5, 2000401 (2020). doi: 10.1002/admt.202000401

    CrossRef Google Scholar

    [72] Cho TH, Farjam N, Allemang CR, Pannier CP, Kazyak E et al. Area-selective atomic layer deposition patterned by electrohydrodynamic jet printing for additive manufacturing of functional materials and devices. ACS Nano 14, 17262–17272 (2020). doi: 10.1021/acsnano.0c07297

    CrossRef Google Scholar

    [73] Kim BH, Onses MS, Lim JB, Nam S, Oh N et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett 15, 969–973 (2015). doi: 10.1021/nl503779e

    CrossRef Google Scholar

    [74] Yakunin S, Chaaban J, Benin BM, Cherniukh I, Bernasconi C et al. Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nat Commun 12, 981 (2021). doi: 10.1038/s41467-021-21214-3

    CrossRef Google Scholar

    [75] Park JU, Hardy M, Kang SJ, Barton K, Adair K et al. High-resolution electrohydrodynamic jet printing. Nat Mater 6, 782–789 (2007). doi: 10.1038/nmat1974

    CrossRef Google Scholar

    [76] Murata K, Sagisaka H, Shimizu K, Matsuba Y, Yokoyama H. Minimal manufacturing process by using a super fine inkjet system. In 2005 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing 588–589 (IEEE, 2005); http://doi.org/10.1109/ECODIM.2005.1619302.

    Google Scholar

    [77] Shirakawa N, Kajihara K, Kashiwagi Y, Murata K. Fine-pitch copper wiring formed in a platingless process using ultra-fine inkjet and oxygen pump. In 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC) 373–376 (IEEE, 2015);http://doi.org/10.1109/ICEP-IAAC.2015.7111038.

    Google Scholar

    [78] Leppäniemi J, Mattila T, Eiroma K, Miyakawa T, Murata K et al. Printed low-voltage fuse memory on paper. IEEE Electron Device Lett 35, 354–356 (2014). doi: 10.1109/LED.2014.2300413

    CrossRef Google Scholar

    [79] Zhang J, Geng BW, Duan SM, Huang CC, Xi Y et al. High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. J Mater Chem C 8, 15219–15223 (2020). doi: 10.1039/D0TC02508A

    CrossRef Google Scholar

    [80] Laurila MM, Soltani A, Mäntysalo M. Inkjet printed single layer high-density circuitry for a MEMS device. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) 968–972 (IEEE, 2015);http://doi.org/10.1109/ECTC.2015.7159712.

    Google Scholar

    [81] Murata K. Direct fabrication of super -fine wiring and bumping by using inkjet process. Polytronic 2007–6th International Conference on Polymers and Adhesives in Microelectronics and Photonics 293–296 (IEEE, 2007);http://doi.org/10.1109/POLYTR.2007.4339186.

    Google Scholar

    [82] Yang S, Zhen S, Shamim A. Fully inkjet Printed 85 GHz band pass filter on flexible substrate. 2018 48th European Microwave Conference (EuMC) 652–654 (IEEE, 2018);http://doi.org/10.23919/EuMC.2018.8541504.

    Google Scholar

    [83] Futaba DN, Miyake K, Murata K, Hayamizu Y, Yamada T et al. Dual porosity single-walled carbon nanotube material. Nano Lett 9, 3302–3307 (2009). doi: 10.1021/nl901581t

    CrossRef Google Scholar

    [84] Khorramdel B, Laurila MM, Mäntysalo M. Metallization of high density TSVs using super inkjet technology. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) 41–45 (IEEE, 2015);http://doi.org/10.1109/ECTC.2015.7159569.

    Google Scholar

    [85] Shirakawa N, Murata K, Kajihara Y, Nakamura K, Kashiwagi Y et al. Fine-pitch copper wiring formed with super-inkjet and oxygen pump. Jpn J Appl Phys 52, 05DB19 (2013). doi: 10.7567/JJAP.52.05DB19

    CrossRef Google Scholar

    [86] Parry AVS, Straub AJ, Villar-Alvarez EM, Phuengphol T, Nicoll JER et al. Submicron patterning of polymer brushes: an unexpected discovery from inkjet printing of polyelectrolyte macroinitiators. J Am Chem Soc 138, 9009–9012 (2016). doi: 10.1021/jacs.6b02952

    CrossRef Google Scholar

    [87] Khorramdel B, Liljeholm J, Laurila MM, Lammi T, Mårtensson G et al. Inkjet printing technology for increasing the I/O density of 3D TSV interposers. Microsyst Nanoeng 3, 17002 (2017). doi: 10.1038/micronano.2017.2

    CrossRef Google Scholar

    [88] Kitamura I, Oishi K, Hara M, Nagano S, Seki T. Photoinitiated Marangoni flow morphing in a liquid crystalline polymer film directed by super-inkjet printing patterns. Sci Rep 9, 2556 (2019). doi: 10.1038/s41598-019-38709-1

    CrossRef Google Scholar

    [89] Shao F, Wan Q. Recent progress on jet printing of oxide-based thin film transistors. J Phys D:Appl Phys 52, 143002 (2019). doi: 10.1088/1361-6463/aafd79

    CrossRef Google Scholar

    [90] Goh GL, Agarwala S, Yeong WY. Aerosol-jet-printed preferentially aligned carbon nanotube twin-lines for printed electronics. ACS Appl Mater Interfaces 11, 43719–43730 (2019). doi: 10.1021/acsami.9b15060

    CrossRef Google Scholar

    [91] Hildebrandt S, Kinski I, Mosch S, Waltinger A, Uhlig F et al. Non-contact printing: conductive track geometry affected by ink rheology and composition. Microsyst Technol 21, 1363–1369 (2015). doi: 10.1007/s00542-014-2275-8

    CrossRef Google Scholar

    [92] Tait JG, Witkowska E, Hirade M, Ke TH, Malinowski PE et al. Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Org Electron 22, 40–43 (2015). doi: 10.1016/j.orgel.2015.03.034

    CrossRef Google Scholar

    [93] Hong K, Kim YH, Kim SH, Xie W, Xu WD et al. Transistors: aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors (Adv. Mater. 41/2014). Adv Mater 26, 7131 (2014). doi: 10.1002/adma.201470285

    CrossRef Google Scholar

    [94] Cai F, Chang YH, Wang K, Zhang C, Wang B et al. Low-loss 3-D multilayer transmission lines and interconnects fabricated by additive manufacturing technologies. IEEE Trans Microw Theory Tech 64, 3208–3216 (2016). doi: 10.1109/TMTT.2016.2601907

    CrossRef Google Scholar

    [95] Cao CY, Andrews JB, Franklin AD. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater 3, 1700057 (2017). doi: 10.1002/aelm.201700057

    CrossRef Google Scholar

    [96] Seifert T, Sowade E, Roscher F, Wiemer M, Gessner T et al. Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind Eng Chem Res 54, 769–779 (2015). doi: 10.1021/ie503636c

    CrossRef Google Scholar

    [97] Ha MJ, Seo JWT, Prabhumirashi PL, Zhang W, Geier ML et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett 13, 954–960 (2013). doi: 10.1021/nl3038773

    CrossRef Google Scholar

    [98] Mahajan A, Frisbie CD, Francis LF. Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5, 4856–4864 (2013). doi: 10.1021/am400606y

    CrossRef Google Scholar

    [99] Agarwala S, Goh GL, Yeong WY. Aerosol jet printed pH sensor based on carbon nanotubes for flexible electronics. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018) 88–94 (Nanyang Technological University, 2018);http://doi.org/10.25341/D4Q59F.

    Google Scholar

    [100] Agarwala S, Goh GL, Yeong WY. Aerosol jet printed strain sensor: simulation studies analyzing the effect of dimension and design on performance (September 2018). IEEE Access 6, 63080–63086 (2018). doi: 10.1109/ACCESS.2018.2876647

    CrossRef Google Scholar

    [101] Oakley C, Chahal P. Aerosol jet printed quasi-optical terahertz components. IEEE Trans Terahertz Sci Technol 8, 765–772 (2018). doi: 10.1109/TTHZ.2018.2873915

    CrossRef Google Scholar

    [102] Miller A, Carchman R, Long R, Denslow SA. La Crosse viral infection in hospitalized pediatric patients in Western North Carolina. Hosp Pediatr 2, 235–242 (2012). doi: 10.1542/hpeds.2012-0022

    CrossRef Google Scholar

    [103] Tafoya RR, Secor EB. Understanding and mitigating process drift in aerosol jet printing. Flex Print Electron 5, 015009 (2020). doi: 10.1088/2058-8585/ab6e74

    CrossRef Google Scholar

    [104] Mandal S, Chakraborty S. Effect of uniform electric field on the drop deformation in simple shear flow and emulsion shear rheology. Phys Fluids 29, 072109 (2017). doi: 10.1063/1.4995473

    CrossRef Google Scholar

    [105] Yu M, Ahn KH, Lee SJ. Design optimization of ink in electrohydrodynamic jet printing: effect of viscoelasticity on the formation of Taylor cone jet. Mater Des 89, 109–115 (2016). doi: 10.1016/j.matdes.2015.09.141

    CrossRef Google Scholar

    [106] Wang X, Zheng GF, Xu L, Wang H, Li WW. Rheology behaviors of stable electrohydrodynamic direct-write jet. AIP Adv 6, 105103 (2016). doi: 10.1063/1.4964620

    CrossRef Google Scholar

    [107] Wang QL, Zhang GN, Zhang HY, Duan YQ, Yin ZP et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Funct Mater 31, 2100857 (2021). doi: 10.1002/adfm.202100857

    CrossRef Google Scholar

    [108] Kwack YJ, Choi WS. Electrohydrodynamic jet printed indium-zinc-oxide thin-film transistors. J Dis Technol 12, 3–7 (2016). doi: 10.1109/JDT.2015.2441834

    CrossRef Google Scholar

    [109] Altintas Y, Torun I, Yazici AF, Beskazak E, Erdem T et al. Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem Eng J 380, 122493 (2020). doi: 10.1016/j.cej.2019.122493

    CrossRef Google Scholar

    [110] Yang YJ, Kim HC, Sajid M, wan Kim S, Aziz S et al. Drop-on-demand electrohydrodynamic printing of high resolution conductive micro patterns for MEMS repairing. Int J Precis Eng Manuf 19, 811–819 (2018). doi: 10.1007/s12541-018-0097-9

    CrossRef Google Scholar

    [111] Kim K, Bae J, Noh SH, Jang J, Kim SH et al. Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J Phys Chem Lett 8, 5492–5500 (2017). doi: 10.1021/acs.jpclett.7b02590

    CrossRef Google Scholar

    [112] Li HG, Liu N, Shao ZL, Li HY, Xiao L et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J Mater Chem C 7, 14867–14873 (2019). doi: 10.1039/C9TC04394B

    CrossRef Google Scholar

    [113] Ding HB, Zhu C, Tian L, Liu CH, Fu GB et al. Structural color patterns by electrohydrodynamic jet printed photonic crystals. ACS Appl Mater Interfaces 9, 11933–11941 (2017). doi: 10.1021/acsami.6b11409

    CrossRef Google Scholar

    [114] Wei C, Qin HT, Ramirez-Iglesias NA, Chiu CP, Lee YS et al. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates. J Micromech Microeng 24, 045010 (2014). doi: 10.1088/0960-1317/24/4/045010

    CrossRef Google Scholar

    [115] Qin HT, Wei C, Dong JY, Lee YS. Direct printing and electrical characterization of conductive micro-silver tracks by alternating current-pulse modulated electrohydrodynamic jet printing. J Manuf Sci Eng 139, 021008 (2017). doi: 10.1115/1.4033903

    CrossRef Google Scholar

    [116] Jia SQ, Li GY, Liu P, Cai R, Tang HD et al. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing. Adv Funct Mater 30, 1910817 (2020). doi: 10.1002/adfm.201910817

    CrossRef Google Scholar

    [117] Fromm JE. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Dev 28, 322–333 (1984). doi: 10.1147/rd.283.0322

    CrossRef Google Scholar

    [118] McKinley GH, Renardy M. Wolfgang von ohnesorge. Phys Fluids 23, 127101 (2011). doi: 10.1063/1.3663616

    CrossRef Google Scholar

    [119] Tai JY, Gan HY, Liang YN, Lok BK. Control of droplet formation in inkjet printing using Ohnesorge number category: materials and processes. 2008 10th Electronics Packaging Technology Conference 761–766 (IEEE, 2008);http://doi.org/10.1109/EPTC.2008.4763524.

    Google Scholar

    [120] Kim E, Baek J. Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model. Phys Fluids 24, 082103 (2012). doi: 10.1063/1.4742913

    CrossRef Google Scholar

    [121] Obata K, Schonewille A, Slobin S, Hohnholz A, Unger C et al. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane. Appl Phys Lett 111, 121903 (2017). doi: 10.1063/1.4996547

    CrossRef Google Scholar

    [122] Nguyen TC, Choi WS. Electrospray mechanism for quantum dot thin-film formation using an electrohydrodynamic jet and light-emitting device application. Sci Rep 10, 11075 (2020). doi: 10.1038/s41598-020-67867-w

    CrossRef Google Scholar

    [123] Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997). doi: 10.1038/39827

    CrossRef Google Scholar

    [124] Park Y, Park Y, Lee J, Lee C. Simulation for forming uniform inkjet-printed quantum dot layer. J Appl Phys 125, 065304 (2019). doi: 10.1063/1.5079863

    CrossRef Google Scholar

    [125] van den Berg AMJ, de Laat AWM, Smith PJ, Perelaer J, Schubert US. Geometric control of inkjet printed features using a gelating polymer. J Mater Chem 17, 677–683 (2007). doi: 10.1039/B612158F

    CrossRef Google Scholar

    [126] Yunker PJ, Lohr MA, Still T, Borodin A, Durian DJ et al. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions. Phys Rev Lett 110, 035501 (2013). doi: 10.1103/PhysRevLett.110.035501

    CrossRef Google Scholar

    [127] Keller K, Yakovlev AV, Grachova EV, Vinogradov AV. Inkjet printing of multicolor daylight visible opal holography. Adv Funct Mater 28, 1706903 (2018). doi: 10.1002/adfm.201706903

    CrossRef Google Scholar

    [128] Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 2224–2231 (2008). doi: 10.1021/la7026847

    CrossRef Google Scholar

    [129] Kim D, Jeong S, Park BK, Moon J. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl Phys Lett 89, 264101 (2006). doi: 10.1063/1.2424671

    CrossRef Google Scholar

    [130] Wang LB, Li FY, Kuang MN, Gao M, Wang JX et al. Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small 11, 1900–1904 (2015). doi: 10.1002/smll.201403355

    CrossRef Google Scholar

    [131] Eral HB, Augustine DM, Duits MHG, Mugele F. Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 7, 4954–4958 (2011). doi: 10.1039/c1sm05183k

    CrossRef Google Scholar

    [132] Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5, 265–270 (2006). doi: 10.1038/nmat1611

    CrossRef Google Scholar

    [133] Jia SQ, Tang HF, Ma JR, Ding SH, Qu XW et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability. Adv Opt Mater 9, 2101069 (2021). doi: 10.1002/adom.202101069

    CrossRef Google Scholar

    [134] de Gans BJ, Schubert US. Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789–7793 (2004). doi: 10.1021/la049469o

    CrossRef Google Scholar

    [135] Xiong XY, Wei CT, Xie LM, Chen M, Tang PY et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Org Electron 73, 247–254 (2019). doi: 10.1016/j.orgel.2019.06.016

    CrossRef Google Scholar

    [136] Gao AJ, Yan J, Wang ZJ, Liu P, Wu D et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 12, 2569–2577 (2020). doi: 10.1039/C9NR09651E

    CrossRef Google Scholar

    [137] Li ZH, Li PW, Chen GS, Cheng YJ, Pi XD et al. Ink engineering of inkjet printing perovskite. ACS Appl Mater Interfaces 12, 39082–39091 (2020). doi: 10.1021/acsami.0c09485

    CrossRef Google Scholar

    [138] Still T, Yunker PJ, Yodh AG. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28, 4984–4988 (2012). doi: 10.1021/la204928m

    CrossRef Google Scholar

    [139] Hyun BR, Sher CW, Chang YW, Lin YH, Liu ZJ et al. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays. J Phys Chem Lett 12, 6946–6954 (2021). doi: 10.1021/acs.jpclett.1c00321

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(3533) PDF downloads(692) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint