Citation: | Merkininkaitė G, Aleksandravičius E, Malinauskas M, Gailevičius D, Šakirzanovas S. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron Adv 5, 210077 (2022). doi: 10.29026/oea.2022.210077 |
[1] | Janssen R, Scheppokat S, Claussen N. Tailor-made ceramic-based components—Advantages by reactive processing and advanced shaping techniques. J Eur Ceram Soc 28, 1369–1379 (2008). doi: 10.1016/j.jeurceramsoc.2007.12.022 |
[2] | Chen ZW, Li ZY, Li JJ, Liu CB, Lao CS et al. 3D printing of ceramics: A review. J Eur Ceram Soc 39, 661–687 (2019). doi: 10.1016/j.jeurceramsoc.2018.11.013 |
[3] | Kotz F, Quick AS, Risch P, Martin T, Hoose T et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv Mater 33, 2006341 (2021). doi: 10.1002/adma.202006341 |
[4] | Moore DG, Barbera L, Masania K, Studart AR. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat Mater 19, 212–217 (2020). doi: 10.1038/s41563-019-0525-y |
[5] | Yee DW, Citrin MA, Taylor ZW, Saccone MA, Tovmasyan VL et al. Hydrogel-based additive manufacturing of lithium cobalt oxide. Adv Mater Technol 6, 2000791 (2021). doi: 10.1002/admt.202000791 |
[6] | Wang XF, Guo W, Abu-Reziq R, Magdassi S. High-complexity WO3-based catalyst with multi-catalytic species via 3D printing. Catalysts 10, 840 (2020). doi: 10.3390/catal10080840 |
[7] | Cooperstein I, Indukuri SRKC, Bouketov A, Levy U, Magdassi S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv Mater 32, 2001675 (2020). doi: 10.1002/adma.202001675 |
[8] | Gailevičius D, Padolskytė V, Mikoliūnaitė L, Šakirzanovas S, Juodkazis S et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz 4, 647–651 (2019). doi: 10.1039/C8NH00293B |
[9] | Jonušauskas L, Gailevičius D, Mikoliūnaitė L, Sakalauskas D, Šakirzanovas S et al. Optically clear and resilient free-form μ-Optics 3D-printed via ultrafast laser lithography. Materials (Basel) 10, 12 (2017). doi: 10.3390/ma10010012 |
[10] | Desponds A, Banyasz A, Montagnac G, Andraud C, Baldeck P et al. Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures. J Sol-Gel Sci Technol 95, 733–745 (2020). doi: 10.1007/s10971-020-05355-3 |
[11] | Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. J Opt 20, 053001 (2018). doi: 10.1088/2040-8986/aab3fe |
[12] | Haske W, Chen VW, Hales JM, Dong WT, Barlow S et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Expr 15, 3426–3436 (2007). doi: 10.1364/OE.15.003426 |
[13] | Emons M, Obata K, Binhammer T, Ovsianikov A, Chichkov BN et al. Two-photon polymerization technique with sub-50 NM resolution by sub-10 FS laser pulses. Opt Mater Expr 2, 942–947 (2012). doi: 10.1364/OME.2.000942 |
[14] | Bauer J, Schroer A, Schwaiger R, Kraft O. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 15, 438–443 (2016). doi: 10.1038/nmat4561 |
[15] | Zhang X, Vyatskikh A, Gao HJ, Greer JR, Li XY. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proc Nat Acad Sci USA 116, 6665–6672 (2019). doi: 10.1073/pnas.1817309116 |
[16] | Seniutinas G, Weber A, Padeste C, Sakellari I, Farsari M et al. Beyond 100 nm resolution in 3D laser lithography-Post processing solutions. Microelectron Eng 191, 25–31 (2018). doi: 10.1016/j.mee.2018.01.018 |
[17] | Kaiser A, Lobert M, Telle R. Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc 28, 2199–2211 (2008). doi: 10.1016/j.jeurceramsoc.2007.12.040 |
[18] | Nakamori F, Ohishi Y, Muta H, Kurosaki K, Fukumoto KI et al. Mechanical and thermal properties of ZrSiO4. J Nucl Sci Technol 54, 1267–1273 (2017). doi: 10.1080/00223131.2017.1359117 |
[19] | Chiker F, Boukabrine F, Khachai H, Khenata R, Mathieu C et al. Investigating the structural, thermal, and electronic properties of the zircon-type ZrSiO4, ZrGeO4 and HfSiO4 compounds. J Electron Mater 45, 5811–5821 (2016). doi: 10.1007/s11664-016-4767-z |
[20] | Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008). doi: 10.1021/nn800451w |
[21] | LaFratta CN, Baldacchini T. Two-photon polymerization metrology: characterization methods of mechanisms and microstructures. Micromachines 8, 101 (2017). doi: 10.3390/mi8040101 |
[22] | Zhang SP, Tie S, Zhang JF. Cristobalite formation from the thermal treatment of amorphous silica fume recovered from the metallurgical silicon industry. Micro Nano Letters 13, 1465–1468 (2018). doi: 10.1049/mnl.2018.5167 |
[23] | Chevalier J, Gremillard L. Zirconia ceramics. Bioceram Their Clin Appl , 243–265 (2008). |
[24] | Zhou H, Li Q, Lee TY, Guymon CA, Jönsson ES et al. Photopolymerization of acid containing monomers: real-time monitoring of polymerization rates. Macromolecules 39, 8269–8273 (2006). doi: 10.1021/ma061332c |
[25] | Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C et al. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). doi: 10.1021/nn204454c |
[26] | Di L, Kerns EH. Drug-Like Properties 2nd ed (Boston: Academic Press, 2016). |
[27] | Belmares M, Blanco M, Goddard III WA, Ross RB, Caldwell G et al. Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors. J Computat Chem 25, 1814–1826 (2004). doi: 10.1002/jcc.20098 |
[28] | Liu L, Ma Z, Yan ZY, Zhu SZ, Gao LH. The ZrO2 formation in ZrB2/SiC composite irradiated by laser. Materials (Basel) 8, 8745–8750 (2015). doi: 10.3390/ma8125475 |
[29] | Van Santen RA. The Ostwald step rule. J Phys Chem 88, 5768–5769 (1984). doi: 10.1021/j150668a002 |
[30] | Threlfall T. Structural and thermodynamic explanations of Ostwald’s rule. Org Proc Res Dev 7, 1017–1027 (2003). doi: 10.1021/op030026l |
[31] | Auxéméry A, Philippot G, Suchomel MR, Testemale D, Aymonier C. Stabilization of tetragonal zirconia nanocrystallites using an original supercritical-based synthesis route. Chem Mater 32, 8169–8181 (2020). doi: 10.1021/acs.chemmater.0c01550 |
[32] | Cardenas-Benitez B, Eschenbaum C, Mager D, Korvink JG, Madou M et al. Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model. Microsyst Nanoeng 5, 38 (2019). doi: 10.1038/s41378-019-0079-9 |
[33] | Konstantinou G, Kakkava E, Hagelüken L, Sasikumar PVW, Wang JP et al. Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin. Add Manuf 35, 101343 (2020). |
[34] | Chai NY, Liu YN, Yue YF, Wei P, Wang XW et al. Tin oxide ceramics 3D nonlinear photolithography via femtosecond laser. Sci Chi Mater (2020). |
[35] | Bauer J, Crook C, Izard AG, Eckel ZC, Ruvalcaba N et al. Additive manufacturing of ductile, ultrastrong polymer-derived nanoceramics. Matter 1, 1547–1556 (2019). doi: 10.1016/j.matt.2019.09.009 |
[36] | Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett 20, 3513–3520 (2020). doi: 10.1021/acs.nanolett.0c00454 |
[37] | Malinauskas M, Danilevičius P, Juodkazis S. Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses. Opt Expr 19, 5602–5610 (2011). doi: 10.1364/OE.19.005602 |
Supplementary information for Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures |
Graphical abstract showing precursors, their molar ratios in (a) syntheses, (b) photopolymerization and calcination technology and (c) formed crystalline phase lattices after calcination (Cristobalite, SiO2, ZrSiO4, monoclinic ZrO2 and tetragonal ZrO2). These phases can be observed depending on the treatment temperature and initial hybrid materials compositions.
(a) TGA data of SiX:ZrY showing weight loss vs. temperature (red line). (b) Theoretical (square symbols) and practical (circle symbols) weight loss for the phase transition from the polymeric to the glass/ceramic phase (black) and volumetric shrinkage (red) (theoretical- square symbols, practical- circle symbols) of cubes at the same phase transition (error bars of volumetric shrinkage represent Std. dev., n = 3, TGA measurements were performed once for each material, so it is not possible to include error bars for the weight loss). SEM images of the Si7:Zr3 cube before (c) and after (d) heat treatment at 1000 °C.
Si9:Zr1 woodpiles (a–c) before heat treatment and (d–f) after heating at 1000 °C under air atmosphere. (a, d) Woodpiles fabricated at 200 μm/s speed (on the top line) and at 500 μm/s speed (on the bottom line) with 48, 56, 64 μW incident irradiation power. (b, c, e, and f) The highest resolution of woodpiles was obtained by applying 200 μm/s and 64 μW parameters. (g) The dependence of Si9:Zr1, Si7:Zr3, Si5:Zr5 woodpiles lines width on the laser irradiance at 200 μm/s speed. Before heat treatment- solid lines, after- dashed lines. (h) The dependence of Si9:Zr1, Si7:Zr3, Si5:Zr5 woodpiles lines width on the laser irradiance at 500 μm/s speed (error bars represent Std. dev., n = 3).
X-ray diffractograms of structures (SEM images) annealed at 1000 °C (a-Si5:Zr5, b-Si6:Zr4, c-Si7:Zr3, d-Si8:Zr2, e-Si9:Zr1, f-reference data) and X-ray diffractograms of powders annealed at 1000 °C (g-Si5:Zr5, h-Si6:Zr4, i-Si7:Zr3, j-Si8:Zr2, k-Si9:Zr1, l-reference data). SEM images show corresponding 3D scaffolds treated at 1000 °C. SEM images correspond to the same scale bar.
X-ray diffractograms of structures (SEM images) annealed at 1200 °C (a-Si5:Zr5, b-Si6:Zr4, c-Si7:Zr3, d-Si8:Zr2, e-Si9:Zr1, f-reference data) and X-ray diffractograms of powders annealed at 1200 °C (g-Si5:Zr5, h-Si6:Zr4, i-Si7:Zr3, j-Si8:Zr2, k-Si9:Zr1, l-reference data). SEM images show corresponding 3D scaffolds treated at 1200 °C temperature. SEM images correspond to the same scale bar.
X-ray diffractograms of structures (SEM images) annealed at 1400 °C (a-Si5:Zr5, b-Si6:Zr4, c-Si7:Zr3, d-Si8:Zr2, e-Si9:Zr1, f-reference data) and X-ray diffractograms of powders annealed at 1400 °C (g-Si5:Zr5, h-Si6:Zr4, i-Si7:Zr3, j-Si8:Zr2, k-Si9:Zr2, l-reference data). SEM images show corresponding 3D scaffolds treated at 1400 °C temperature. SEM images correspond to the same scale bar.
X-ray diffraction measurements. (a) X-Ray diffraction pattern of Si6:Zr4 structure annealed at 1200 °C temperature. (b) Reference patterns. (c) Debye-Scherrer rings obtained after X-ray diffraction measurement. (d) Photograph of Si6:Zr4 structure annealed at 1200 °C temperature before measurement.