Merkininkaitė G, Aleksandravičius E, Malinauskas M, Gailevičius D, Šakirzanovas S. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron Adv 5, 210077 (2022). doi: 10.29026/oea.2022.210077
Citation: Merkininkaitė G, Aleksandravičius E, Malinauskas M, Gailevičius D, Šakirzanovas S. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron Adv 5, 210077 (2022). doi: 10.29026/oea.2022.210077

Original Article Open Access

Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures

More Information
  • The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale. The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures. In this work, it was examined a series of organometallic polymer precursors with different silicon (Si) and zirconium (Zr) molar ratios, ranging from 9:1 to 5:5, prepared via sol-gel method. All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano- and micro-feature sized structures. Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase. The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis, which revealed a lower crystallization temperature for microstructures compared to bulk materials. Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400 °C. Under the proper conditions, a wide variety of crystalline phases as well as zircon (ZrSiO4 - a highly stable material) can be observed. In addition, the highest new record of achieved resolution below 60 nm has been reached. The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.
  • 加载中
  • [1] Janssen R, Scheppokat S, Claussen N. Tailor-made ceramic-based components—Advantages by reactive processing and advanced shaping techniques. J Eur Ceram Soc 28, 1369–1379 (2008). doi: 10.1016/j.jeurceramsoc.2007.12.022

    CrossRef Google Scholar

    [2] Chen ZW, Li ZY, Li JJ, Liu CB, Lao CS et al. 3D printing of ceramics: A review. J Eur Ceram Soc 39, 661–687 (2019). doi: 10.1016/j.jeurceramsoc.2018.11.013

    CrossRef Google Scholar

    [3] Kotz F, Quick AS, Risch P, Martin T, Hoose T et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv Mater 33, 2006341 (2021). doi: 10.1002/adma.202006341

    CrossRef Google Scholar

    [4] Moore DG, Barbera L, Masania K, Studart AR. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat Mater 19, 212–217 (2020). doi: 10.1038/s41563-019-0525-y

    CrossRef Google Scholar

    [5] Yee DW, Citrin MA, Taylor ZW, Saccone MA, Tovmasyan VL et al. Hydrogel-based additive manufacturing of lithium cobalt oxide. Adv Mater Technol 6, 2000791 (2021). doi: 10.1002/admt.202000791

    CrossRef Google Scholar

    [6] Wang XF, Guo W, Abu-Reziq R, Magdassi S. High-complexity WO3-based catalyst with multi-catalytic species via 3D printing. Catalysts 10, 840 (2020). doi: 10.3390/catal10080840

    CrossRef Google Scholar

    [7] Cooperstein I, Indukuri SRKC, Bouketov A, Levy U, Magdassi S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv Mater 32, 2001675 (2020). doi: 10.1002/adma.202001675

    CrossRef Google Scholar

    [8] Gailevičius D, Padolskytė V, Mikoliūnaitė L, Šakirzanovas S, Juodkazis S et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz 4, 647–651 (2019). doi: 10.1039/C8NH00293B

    CrossRef Google Scholar

    [9] Jonušauskas L, Gailevičius D, Mikoliūnaitė L, Sakalauskas D, Šakirzanovas S et al. Optically clear and resilient free-form μ-Optics 3D-printed via ultrafast laser lithography. Materials (Basel) 10, 12 (2017). doi: 10.3390/ma10010012

    CrossRef Google Scholar

    [10] Desponds A, Banyasz A, Montagnac G, Andraud C, Baldeck P et al. Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures. J Sol-Gel Sci Technol 95, 733–745 (2020). doi: 10.1007/s10971-020-05355-3

    CrossRef Google Scholar

    [11] Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. J Opt 20, 053001 (2018). doi: 10.1088/2040-8986/aab3fe

    CrossRef Google Scholar

    [12] Haske W, Chen VW, Hales JM, Dong WT, Barlow S et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Expr 15, 3426–3436 (2007). doi: 10.1364/OE.15.003426

    CrossRef Google Scholar

    [13] Emons M, Obata K, Binhammer T, Ovsianikov A, Chichkov BN et al. Two-photon polymerization technique with sub-50 NM resolution by sub-10 FS laser pulses. Opt Mater Expr 2, 942–947 (2012). doi: 10.1364/OME.2.000942

    CrossRef Google Scholar

    [14] Bauer J, Schroer A, Schwaiger R, Kraft O. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 15, 438–443 (2016). doi: 10.1038/nmat4561

    CrossRef Google Scholar

    [15] Zhang X, Vyatskikh A, Gao HJ, Greer JR, Li XY. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proc Nat Acad Sci USA 116, 6665–6672 (2019). doi: 10.1073/pnas.1817309116

    CrossRef Google Scholar

    [16] Seniutinas G, Weber A, Padeste C, Sakellari I, Farsari M et al. Beyond 100 nm resolution in 3D laser lithography-Post processing solutions. Microelectron Eng 191, 25–31 (2018). doi: 10.1016/j.mee.2018.01.018

    CrossRef Google Scholar

    [17] Kaiser A, Lobert M, Telle R. Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc 28, 2199–2211 (2008). doi: 10.1016/j.jeurceramsoc.2007.12.040

    CrossRef Google Scholar

    [18] Nakamori F, Ohishi Y, Muta H, Kurosaki K, Fukumoto KI et al. Mechanical and thermal properties of ZrSiO4. J Nucl Sci Technol 54, 1267–1273 (2017). doi: 10.1080/00223131.2017.1359117

    CrossRef Google Scholar

    [19] Chiker F, Boukabrine F, Khachai H, Khenata R, Mathieu C et al. Investigating the structural, thermal, and electronic properties of the zircon-type ZrSiO4, ZrGeO4 and HfSiO4 compounds. J Electron Mater 45, 5811–5821 (2016). doi: 10.1007/s11664-016-4767-z

    CrossRef Google Scholar

    [20] Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008). doi: 10.1021/nn800451w

    CrossRef Google Scholar

    [21] LaFratta CN, Baldacchini T. Two-photon polymerization metrology: characterization methods of mechanisms and microstructures. Micromachines 8, 101 (2017). doi: 10.3390/mi8040101

    CrossRef Google Scholar

    [22] Zhang SP, Tie S, Zhang JF. Cristobalite formation from the thermal treatment of amorphous silica fume recovered from the metallurgical silicon industry. Micro Nano Letters 13, 1465–1468 (2018). doi: 10.1049/mnl.2018.5167

    CrossRef Google Scholar

    [23] Chevalier J, Gremillard L. Zirconia ceramics. Bioceram Their Clin Appl , 243–265 (2008).

    Google Scholar

    [24] Zhou H, Li Q, Lee TY, Guymon CA, Jönsson ES et al. Photopolymerization of acid containing monomers: real-time monitoring of polymerization rates. Macromolecules 39, 8269–8273 (2006). doi: 10.1021/ma061332c

    CrossRef Google Scholar

    [25] Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C et al. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). doi: 10.1021/nn204454c

    CrossRef Google Scholar

    [26] Di L, Kerns EH. Drug-Like Properties 2nd ed (Boston: Academic Press, 2016).

    Google Scholar

    [27] Belmares M, Blanco M, Goddard III WA, Ross RB, Caldwell G et al. Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors. J Computat Chem 25, 1814–1826 (2004). doi: 10.1002/jcc.20098

    CrossRef Google Scholar

    [28] Liu L, Ma Z, Yan ZY, Zhu SZ, Gao LH. The ZrO2 formation in ZrB2/SiC composite irradiated by laser. Materials (Basel) 8, 8745–8750 (2015). doi: 10.3390/ma8125475

    CrossRef Google Scholar

    [29] Van Santen RA. The Ostwald step rule. J Phys Chem 88, 5768–5769 (1984). doi: 10.1021/j150668a002

    CrossRef Google Scholar

    [30] Threlfall T. Structural and thermodynamic explanations of Ostwald’s rule. Org Proc Res Dev 7, 1017–1027 (2003). doi: 10.1021/op030026l

    CrossRef Google Scholar

    [31] Auxéméry A, Philippot G, Suchomel MR, Testemale D, Aymonier C. Stabilization of tetragonal zirconia nanocrystallites using an original supercritical-based synthesis route. Chem Mater 32, 8169–8181 (2020). doi: 10.1021/acs.chemmater.0c01550

    CrossRef Google Scholar

    [32] Cardenas-Benitez B, Eschenbaum C, Mager D, Korvink JG, Madou M et al. Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model. Microsyst Nanoeng 5, 38 (2019). doi: 10.1038/s41378-019-0079-9

    CrossRef Google Scholar

    [33] Konstantinou G, Kakkava E, Hagelüken L, Sasikumar PVW, Wang JP et al. Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin. Add Manuf 35, 101343 (2020).

    Google Scholar

    [34] Chai NY, Liu YN, Yue YF, Wei P, Wang XW et al. Tin oxide ceramics 3D nonlinear photolithography via femtosecond laser. Sci Chi Mater (2020).

    Google Scholar

    [35] Bauer J, Crook C, Izard AG, Eckel ZC, Ruvalcaba N et al. Additive manufacturing of ductile, ultrastrong polymer-derived nanoceramics. Matter 1, 1547–1556 (2019). doi: 10.1016/j.matt.2019.09.009

    CrossRef Google Scholar

    [36] Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett 20, 3513–3520 (2020). doi: 10.1021/acs.nanolett.0c00454

    CrossRef Google Scholar

    [37] Malinauskas M, Danilevičius P, Juodkazis S. Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses. Opt Expr 19, 5602–5610 (2011). doi: 10.1364/OE.19.005602

    CrossRef Google Scholar

  • Supplementary information for Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(13208) PDF downloads(1051) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint