Dittrich S, Spellauge M, Barcikowski S, Huber HP, Gökce B. Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids. Opto-Electron Adv 5, 210053 (2022). doi: 10.29026/oea.2022.210053
Citation: Dittrich S, Spellauge M, Barcikowski S, Huber HP, Gökce B. Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids. Opto-Electron Adv 5, 210053 (2022). doi: 10.29026/oea.2022.210053

Original Article Open Access

Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids

More Information
  • Laser ablation in liquid is a scalable nanoparticle production method with applications in areas like catalysis and biomedicine. Due to laser-liquid interactions, different energy dissipation channels such as absorption by the liquid and scattering at the ablation plume and cavitation bubble lead to reduced laser energy available for nanoparticle production. Ultrashort pulse durations cause unwanted nonlinear effects in the liquid, and for ns pulses, intra-pulse energy deposition attenuation effects are to be expected. However, intermediate pulse durations ranging from hundreds of picoseconds up to one nanosecond have rarely been studied in particular in single-pulse settings. In this study, we explore the pico- to nanosecond pulse duration regimes to find the pulse duration with the highest ablation efficiency. We find that pulse durations around 1–2 ns enable the most efficient laser ablation in liquid since the laser beam shielding by the ablation plume and cavitation bubble sets in only at longer pulse durations. Furthermore, pump-probe microscopy imaging reveals that the plume dynamics in liquids start to differ from plume dynamics in air at about 2 ns after pulse impact.
  • 加载中
  • [1] Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11, 3805 (2009). doi: 10.1039/b900654k

    CrossRef Google Scholar

    [2] Zhang DS, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117, 3990–4103 (2017). doi: 10.1021/acs.chemrev.6b00468

    CrossRef Google Scholar

    [3] Zhang JM, Claverie J, Chaker M, Ma DL. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem 18, 986–1006 (2017). doi: 10.1002/cphc.201601220

    CrossRef Google Scholar

    [4] Fazio E, Gökce B, De Giacomo A, Meneghetti M, Compagnini G et al. Nanoparticles engineering by pulsed laser ablation in liquids: concepts and applications. Nanomaterials 10, 2317 (2020). doi: 10.3390/nano10112317

    CrossRef Google Scholar

    [5] Amendola V, Litti L, Meneghetti M. LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region. Anal Chem 85, 11747–11754 (2013). doi: 10.1021/ac401662r

    CrossRef Google Scholar

    [6] Rehbock C, Jakobi J, Gamrad L, Van Der Meer S, Tiedemann D et al. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5, 1523–1541 (2014). doi: 10.3762/bjnano.5.165

    CrossRef Google Scholar

    [7] Hupfeld T, Wegner A, Blanke M, Doñate-Buendía C, Sharov V et al. Plasmonic seasoning: giving color to desktop laser 3d printed polymers by highly dispersed nanoparticles. Adv Opt Mater 8, 2000473 (2020). doi: 10.1002/adom.202000473

    CrossRef Google Scholar

    [8] Hupfeld T, Salamon S, Landers J, Sommereyns A, Doñate-Buendía C et al. 3D printing of magnetic parts by laser powder bed fusion of iron oxide nanoparticle functionalized polyamide powders. J Mater Chem C 8, 12204–12217 (2020). doi: 10.1039/D0TC02740E

    CrossRef Google Scholar

    [9] Reichenberger S, Marzun G, Muhler M, Barcikowski S. Perspective of surfactant-free colloidal nanoparticles in heterogeneous catalysis. ChemCatChem 11, 4489–4518 (2019). doi: 10.1002/cctc.201900666

    CrossRef Google Scholar

    [10] Dittrich S, Kohsakowski S, Wittek B, Hengst C, Gökce B et al. Increasing the size-selectivity in laser-based g/h liquid flow synthesis of Pt and PtPd nanoparticles for CO and NO oxidation in industrial automotive exhaust gas treatment benchmarking. Nanomaterials 10, 1582 (2020). doi: 10.3390/nano10081582

    CrossRef Google Scholar

    [11] Zhang JM, Oko DN, Garbarino S, Imbeault R, Chaker M et al. Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J Phys Chem C 116, 13413–13420 (2012). doi: 10.1021/jp302485g

    CrossRef Google Scholar

    [12] Jendrzej S, Gökce B, Epple M, Barcikowski S. How size determines the value of gold: economic aspects of wet chemical and laser-based metal colloid synthesis. ChemPhysChem 18, 1012–1019 (2017). doi: 10.1002/cphc.201601139

    CrossRef Google Scholar

    [13] Waag F, Streubel R, Gökce B, Barcikowski S. Synthesis of gold, platinum, and gold-platinum alloy nanoparticle colloids with high-power megahertz-repetition-rate lasers: the importance of the beam guidance method. Appl Nanosci 11, 1303–1312 (2021). doi: 10.1007/s13204-021-01693-y

    CrossRef Google Scholar

    [14] Kohsakowski S, Seiser F, Wiederrecht JP, Reichenberger S, Vinnay T et al. Effective size separation of laser-generated, surfactant-free nanoparticles by continuous centrifugation. Nanotechnology 31, 095603 (2020). doi: 10.1088/1361-6528/ab55bd

    CrossRef Google Scholar

    [15] Dittrich S, Streubel R, McDonnell C, Huber HP, Barcikowski S et al. Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl Phys A 125, 432 (2019). doi: 10.1007/s00339-019-2704-8

    CrossRef Google Scholar

    [16] Trenque I, Magnano GC, Bárta J, Chaput F, Bolzinger MA et al. Synthesis routes of CeO2 nanoparticles dedicated to organophosphorus degradation: a benchmark. CrystEngComm 22, 1725–1737 (2020). doi: 10.1039/C9CE01898K

    CrossRef Google Scholar

    [17] Dittrich S, Barcikowski S, Gökce B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron Adv 4, 200072 (2021). doi: 10.29026/oea.2021.200072

    CrossRef Google Scholar

    [18] Kennedy PK. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: part I—theory. IEEE J Quantum Electron 31, 2241–2249 (1995). doi: 10.1109/3.477753

    CrossRef Google Scholar

    [19] Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J Quantum Electron 35, 1156–1167 (1999). doi: 10.1109/3.777215

    CrossRef Google Scholar

    [20] Doñate-Buendía C, Fernández-Alonso M, Lancis J, Mínguez-Vega G. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing. Photonics Res 7, 1249–1257 (2019). doi: 10.1364/PRJ.7.001249

    CrossRef Google Scholar

    [21] Kalus MR, Lanyumba R, Lorenzo-Parodi N, Jochmann MA, Kerpen K et al. Determining the role of redox-active materials during laser-induced water decomposition. Phys Chem Chem Phys 21, 18636–18651 (2019). doi: 10.1039/C9CP02663K

    CrossRef Google Scholar

    [22] Kalus MR, Reimer V, Barcikowski S, Gökce B. Discrimination of effects leading to gas formation during pulsed laser ablation in liquids. Appl Surf Sci 465, 1096–1102 (2019). doi: 10.1016/j.apsusc.2018.09.224

    CrossRef Google Scholar

    [23] Kalus MR, Bärsch N, Streubel R, Gökce E, Barcikowski S et al. How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids–quantification of their volume, dwell dynamics, and gas composition. Phys Chem Chem Phys 19, 7112–7123 (2017). doi: 10.1039/C6CP07011F

    CrossRef Google Scholar

    [24] Aguilera JA, Aragón C, Peñalba F. Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis. Appl Surf Sci 127–129, 309–314 (1998);https://doi.org/10.1016/S0169-4332(97)00648-X.

    Google Scholar

    [25] Spellauge M, Winter J, Rapp S, McDonnell C, Sotier F et al. Influence of stress confinement, particle shielding and re-deposition on the ultrashort pulse laser ablation of metals revealed by ultrafast time-resolved experiments. Appl Surf Sci 545, 148930 (2021). doi: 10.1016/j.apsusc.2021.148930

    CrossRef Google Scholar

    [26] Starinskiy SV, Shukhov YG, Bulgakov AV. Laser-induced damage thresholds of gold, silver and their alloys in air and water. Appl Surf Sci 396, 1765–1774 (2017). doi: 10.1016/j.apsusc.2016.11.221

    CrossRef Google Scholar

    [27] Kalus MR, Barcikowski S, Gökce B. How the physicochemical properties of the bulk material affect the ablation crater profile, mass balance, and bubble dynamics during single-pulse, nanosecond laser ablation in water. Chem Eur J 27, 5978–5991 (2021). doi: 10.1002/chem.202005087

    CrossRef Google Scholar

    [28] Riabinina D, Chaker M, Margot J. Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnology 23, 135603 (2012). doi: 10.1088/0957-4484/23/13/135603

    CrossRef Google Scholar

    [29] Sakka T, Masai S, Fukami K, Ogata YH. Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid, Spectrochim. Acta Part B At Spectrosc 64, 981–985 (2009). doi: 10.1016/j.sab.2009.07.018

    CrossRef Google Scholar

    [30] Koechner W, Bass M. Solid-State Lasers (Springer, New York, 2003); https://doi.org/10.1007/b97423.

    Google Scholar

    [31] Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J Mater Process Technol 123, 133–145 (2002). doi: 10.1016/S0924-0136(02)00060-2

    CrossRef Google Scholar

    [32] Domke M, Rapp S, Schmidt M, Huber HP. Ultrafast pump-probe microscopy with high temporal dynamic range. Opt Express 20, 10330–10338 (2012). doi: 10.1364/OE.20.010330

    CrossRef Google Scholar

    [33] Kanitz A, Kalus RM, Gurevich EL, Ostendorf A, Barcikowski S et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci Technol 28, 103001 (2019). doi: 10.1088/1361-6595/ab3dbe

    CrossRef Google Scholar

    [34] Förster DJ, Faas S, Gröninger S, Bauer F, Michalowski A et al. Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses. Appl Surf Sci 440, 926–931 (2018). doi: 10.1016/j.apsusc.2018.01.297

    CrossRef Google Scholar

    [35] Shih CY, Shugaev MV, Wu CP, Zhigilei LV. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Phys Chem Chem Phys 22, 7077–7099 (2020). doi: 10.1039/D0CP00608D

    CrossRef Google Scholar

    [36] Kanitz A, Förster DJ, Hoppius JS, Weber R, Ostendorf A et al. Pump-probe microscopy of femtosecond laser ablation in air and liquids. Appl Surf Sci 475, 204–210 (2019). doi: 10.1016/j.apsusc.2018.12.184

    CrossRef Google Scholar

    [37] Fabbro R, Max C, Fabre E. Planar laser-driven ablation: effect of inhibited electron thermal conduction. Phys Fluids 28, 1463–1481 (1985). doi: 10.1063/1.864982

    CrossRef Google Scholar

    [38] Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100, 148–165 (1996). doi: 10.1121/1.415878

    CrossRef Google Scholar

    [39] Nath A, Khare A. Effect of focusing conditions on laser-induced shock waves at titanium–water interface. Appl Opt 50, 3275 (2011). doi: 10.1364/AO.50.003275

    CrossRef Google Scholar

    [40] De Giacomo A, Dell’Aglio M, Santagata A, Gaudiuso R, De Pascale O et al. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys Chem Chem Phys 15, 3083–3092 (2013). doi: 10.1039/C2CP42649H

    CrossRef Google Scholar

    [41] Hu HF, Liu TG, Zhai HC. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis. Opt Express 23, 628–635 (2015). doi: 10.1364/OE.23.000628

    CrossRef Google Scholar

    [42] Chen X, Xu RQ, Chen JP, Shen ZH, Jian L et al. Shock-wave propagation and cavitation bubble oscillation by Nd: YAG laser ablation of a metal in water. Appl Opt 43, 3251–3257 (2004). doi: 10.1364/ao.43.003251

    CrossRef Google Scholar

    [43] Martí-López L, Ocaña R, Porro JA, Morales M, Ocaña JL. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes. Appl Opt 48, 3671–3680 (2009). doi: 10.1364/AO.48.003671

    CrossRef Google Scholar

    [44] Nguyen TTP, Tanabe R, Ito Y. Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique. Appl Phys Lett 102, 124103 (2013). doi: 10.1063/1.4798532

    CrossRef Google Scholar

    [45] Long JY, Eliceiri MH, Ouyang YX, Zhang YK, Xie XZ et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt Lasers Eng 137, 106334 (2021). doi: 10.1016/j.optlaseng.2020.106334

    CrossRef Google Scholar

    [46] Long JY, Eliceiri M, Vangelatos Z, Rho Y, Wang LT et al. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt Express 28, 14300–14309 (2020). doi: 10.1364/OE.391584

    CrossRef Google Scholar

    [47] Nguyen TTP, Tanabe R, Ito Y. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes. Opt Laser Technol 100, 21–26 (2018). doi: 10.1016/j.optlastec.2017.09.021

    CrossRef Google Scholar

    [48] De Bonis A, Sansone M, D’Alessio L, Galasso A, Santagata A et al. Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid. J Phys D:Appl Phys 46, 445301 (2013). doi: 10.1088/0022-3727/46/44/445301

    CrossRef Google Scholar

    [49] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370

    CrossRef Google Scholar

    [50] Werner WSM, Glantschnig K, Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J Phys Chem Ref Data 38, 1013–1092 (2009). doi: 10.1063/1.3243762

    CrossRef Google Scholar

    [51] Nguyen TTP, Tanabe R, Ito Y. Effects of an absorptive coating on the dynamics of underwater laser-induced shock process. Appl Phys A 116, 1109–1117 (2014). doi: 10.1007/s00339-013-8193-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(4540) PDF downloads(680) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint