Chen JJ, Gan FY. Polarization-switchable plasmonic emitters based on laser-induced bubbles. Opto-Electron Adv 5, 200100 (2022). doi: 10.29026/oea.2022.200100
Citation: Chen JJ, Gan FY. Polarization-switchable plasmonic emitters based on laser-induced bubbles. Opto-Electron Adv 5, 200100 (2022). doi: 10.29026/oea.2022.200100

Original Article Open Access

Polarization-switchable plasmonic emitters based on laser-induced bubbles

More Information
  • Owing to weak light-matter interactions in natural materials, it is difficult to dynamically tune and switch emission polarization states of plasmonic emitters (or antennas) at nanometer scales. Here, by using a control laser beam to induce a bubble (n=1.0) in water (n=1.333) to obtain a large index variation as high as |Δn|=0.333, the emission polarization of an ultra-small plasmonic emitter (~0.4λ2) is experimentally switched at nanometer scales. The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface, and the separation of the two antennas is only sx=120 nm. The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas. Because of a large refractive index variation (|Δn|=0.333), the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser. As a result, the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state, and the change of the degree of linear polarization is as high as Δγ≈0.66.
  • 加载中
  • [1] Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics 4, 83–91 (2010). doi: 10.1038/nphoton.2009.282

    CrossRef Google Scholar

    [2] Wang WH, Yang Q, Fan FR, Xu HX, Wang ZL. Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11, 1603–1608 (2011). doi: 10.1021/nl104514m

    CrossRef Google Scholar

    [3] Cohen M, Zalevsky Z, Shavit R. Towards integrated nanoplasmonic logic circuitry. Nanoscale 5, 5442–5449 (2013). doi: 10.1039/c3nr00830d

    CrossRef Google Scholar

    [4] Chen JJ, Gan FY, Wang YJ, Li GZ. Plasmonic sensing and modulation based on fano resonances. Adv Opt Mater 6, 1701152 (2018). doi: 10.1002/adom.201701152

    CrossRef Google Scholar

    [5] Ma JX, Zeng DZ, Yang YT, Pan C, Zhang L et al. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2, 180022 (2019).

    Google Scholar

    [6] Berini P, De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat Photonics 6, 16–24 (2012). doi: 10.1038/nphoton.2011.285

    CrossRef Google Scholar

    [7] Yang Y, Miller OD, Christensen T, Joannopoulos JD, Soljačić M. Low-loss plasmonic dielectric nanoresonators. Nano Lett 17, 3238–3245 (2017). doi: 10.1021/acs.nanolett.7b00852

    CrossRef Google Scholar

    [8] Zhang YF, Wang HM, Liao HM, Li Z, Sun CW et al. Unidirectional launching of surface plasmons at the subwavelength scale. Appl Phys Lett 105, 231101 (2014). doi: 10.1063/1.4903057

    CrossRef Google Scholar

    [9] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018). doi: 10.1038/s41586-018-0031-4

    CrossRef Google Scholar

    [10] Paolo B, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys 75, 024402 (2012). doi: 10.1088/0034-4885/75/2/024402

    CrossRef Google Scholar

    [11] Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 5, 4354 (2014). doi: 10.1038/ncomms5354

    CrossRef Google Scholar

    [12] Alù A, Engheta N. Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 104, 213902 (2010). doi: 10.1103/PhysRevLett.104.213902

    CrossRef Google Scholar

    [13] Sun CW, Li HY, Gong QH, Chen JJ. Plasmonic polarization-rotating emitters with metallic nanogroove antennas. Adv Opt Mater 5, 1700510 (2017). doi: 10.1002/adom.201700510

    CrossRef Google Scholar

    [14] Wang JW, Bonneau D, Villa M, Silverstone JW, Santagati R et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016). doi: 10.1364/OPTICA.3.000407

    CrossRef Google Scholar

    [15] Gan FY, Li HY, Chen JJ. Tailoring the emission polarization with metasurface-based emitters designed on a plasmonic ridge waveguide. Nanoscale 11, 7140–7148 (2019). doi: 10.1039/C8NR08960D

    CrossRef Google Scholar

    [16] Curto AG, Taminiau TH, Volpe G, Kreuzer MP, Quidant R et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat Commun 4, 1750 (2013). doi: 10.1038/ncomms2769

    CrossRef Google Scholar

    [17] Geisler P, Razinskas G, Krauss E, Wu XF, Rewitz C et al. Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys Rev Lett 111, 183901 (2013). doi: 10.1103/PhysRevLett.111.183901

    CrossRef Google Scholar

    [18] Kim J, Roh YG, Cheon S, Kim UJ, Hwang SW et al. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide. Sci Rep 5, 11832 (2015). doi: 10.1038/srep11832

    CrossRef Google Scholar

    [19] Ren MX, Chen M, Wu W, Zhang LH, Liu JK et al. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. Nano Lett 15, 2951–2957 (2015). doi: 10.1021/nl5047973

    CrossRef Google Scholar

    [20] Lin J, Mueller JPB, Wang Q, Yuan GG, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746

    CrossRef Google Scholar

    [21] Vercruysse D, Zheng XZ, Sonnefraud Y, Verellen N, Di Martino G et al. Directional fluorescence emission by individual v-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014). doi: 10.1021/nn502616k

    CrossRef Google Scholar

    [22] Hancu IM, Curto AG, Castro-López M, Kuttge M, van Hulst NF. Multipolar interference for directed light emission. Nano Lett 14, 166–171 (2014). doi: 10.1021/nl403681g

    CrossRef Google Scholar

    [23] Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010). doi: 10.1126/science.1191922

    CrossRef Google Scholar

    [24] Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi–Uda nanoantenna array. Nat Commun 2, 267 (2011). doi: 10.1038/ncomms1268

    CrossRef Google Scholar

    [25] Obelleiro F, Taboada JM, Solís DM, Bote L. Directive antenna nanocoupler to plasmonic gap waveguides. Opt Lett 38, 1630–1632 (2013). doi: 10.1364/OL.38.001630

    CrossRef Google Scholar

    [26] Guo YH, Pu MB, Zhao ZY, Wang YQ, Jin JJ et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016). doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [27] Li ZP, Shegai T, Haran G, Xu HX. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637–642 (2009). doi: 10.1021/nn800906c

    CrossRef Google Scholar

    [28] Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428

    CrossRef Google Scholar

    [29] Chen JJ, Li Z, Yue S, Gong QH. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett 11, 2933–2937 (2011). doi: 10.1021/nl201401w

    CrossRef Google Scholar

    [30] Pacifici D, Lezec HJ, Atwater HA. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1, 402–406 (2007). doi: 10.1038/nphoton.2007.95

    CrossRef Google Scholar

    [31] MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photonics 3, 55–58 (2009). doi: 10.1038/nphoton.2008.249

    CrossRef Google Scholar

    [32] Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat Photonics 4, 107–111 (2010). doi: 10.1038/nphoton.2009.265

    CrossRef Google Scholar

    [33] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9, 525–528 (2015). doi: 10.1038/nphoton.2015.127

    CrossRef Google Scholar

    [34] Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017). doi: 10.1126/science.aan5953

    CrossRef Google Scholar

    [35] Gan FY, Wang YJ, Sun CW, Zhang GR, Li HY et al. Widely tuning surface plasmon polaritons with laser-induced bubbles. Adv Opt Mater 5, 1600545 (2017). doi: 10.1002/adom.201600545

    CrossRef Google Scholar

    [36] Zhao CL, Liu YM, Zhao YH, Fang N, Huang TJ. A reconfigurable plasmofluidic lens. Nat Commun 4, 2305 (2013). doi: 10.1038/ncomms3305

    CrossRef Google Scholar

    [37] Dickson W, Wurtz GA, Evans PR, Pollard RJ, Zayats AV. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 8, 281–286 (2008). doi: 10.1021/nl072613g

    CrossRef Google Scholar

    [38] Buchnev O, Ou JY, Kaczmarek M, Zheludev NI, Fedotov VA. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt Express 21, 1633–1638 (2013). doi: 10.1364/OE.21.001633

    CrossRef Google Scholar

    [39] Gosciniak J, Markey L, Dereux A, Bozhevolnyi SI. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides. Opt Express 20, 16300–16309 (2012). doi: 10.1364/OE.20.016300

    CrossRef Google Scholar

    [40] Cetin AE, Mertiri A, Huang M, Erramilli S, Altug H. Thermal tuning of surface plasmon polaritons using liquid crystals. Adv Opt Mater 1, 915–920 (2013). doi: 10.1002/adom.201300303

    CrossRef Google Scholar

    [41] Wurtz GA, Hendren W, Pollard R, Atkinson R, Le Guyader LL et al. Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field. New J Phys 10, 105012 (2008). doi: 10.1088/1367-2630/10/10/105012

    CrossRef Google Scholar

    [42] Zhang XP, Sun BQ, Hodgkiss JM, Friend RH. Tunable ultrafast optical switching via waveguided gold nanowires. Adv Mater 20, 4455–4459 (2008). doi: 10.1002/adma.200801162

    CrossRef Google Scholar

    [43] Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH. Submicron bidirectional all-optical plasmonic switches. Sci Rep 3, 1451 (2013). doi: 10.1038/srep01451

    CrossRef Google Scholar

    [44] Sim S, Jang H, Koirala N, Brahlek M, Moon J et al. Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons. Nat Commun 6, 8814 (2015). doi: 10.1038/ncomms9814

    CrossRef Google Scholar

    [45] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370

    CrossRef Google Scholar

    [46] Chen JJ, Li Z, Yue S, Gong QH. Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97, 041113 (2010). doi: 10.1063/1.3472251

    CrossRef Google Scholar

    [47] Li GZ, Jia ST, Yang H, Chen JJ. Direction-controllable plasmonic color scanning by using laser-induced bubbles. Adv Funct Mater 31, 2008579 (2021). doi: 10.1002/adfm.202008579

    CrossRef Google Scholar

    [48] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 14, 37–43 (2020). doi: 10.1038/s41566-019-0547-7

    CrossRef Google Scholar

    [49] Niu XX, Hu XY, Lu CC, Sheng Y, Yang H et al. Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics. Nanophotonics 9, 4609–4618 (2020). doi: 10.1515/nanoph-2020-0420

    CrossRef Google Scholar

    [50] Zhang GR, Gu Y, Gong QH, Chen JJ. Symmetry-tailored patterns and polarizations of single-photon emission. Nanophotonics 9, 3557–3565 (2020). doi: 10.1515/nanoph-2020-0208

    CrossRef Google Scholar

    [51] He JJ, Zheng W, Ligmajer F, Chan CF, Bao ZY et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+ hybrid core-shell-satellite nanostructures. Light Sci Appl 6, e16217 (2017). doi: 10.1038/lsa.2016.217

    CrossRef Google Scholar

    [52] Li GC, Zhang YL, Jiang J, Luo Y, Lei DY. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano 11, 3067–3080 (2017). doi: 10.1021/acsnano.7b00048

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(4550) PDF downloads(723) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint