Citation: | Chen JJ, Gan FY. Polarization-switchable plasmonic emitters based on laser-induced bubbles. Opto-Electron Adv 5, 200100 (2022). doi: 10.29026/oea.2022.200100 |
[1] | Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics 4, 83–91 (2010). doi: 10.1038/nphoton.2009.282 |
[2] | Wang WH, Yang Q, Fan FR, Xu HX, Wang ZL. Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11, 1603–1608 (2011). doi: 10.1021/nl104514m |
[3] | Cohen M, Zalevsky Z, Shavit R. Towards integrated nanoplasmonic logic circuitry. Nanoscale 5, 5442–5449 (2013). doi: 10.1039/c3nr00830d |
[4] | Chen JJ, Gan FY, Wang YJ, Li GZ. Plasmonic sensing and modulation based on fano resonances. Adv Opt Mater 6, 1701152 (2018). doi: 10.1002/adom.201701152 |
[5] | Ma JX, Zeng DZ, Yang YT, Pan C, Zhang L et al. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2, 180022 (2019). |
[6] | Berini P, De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat Photonics 6, 16–24 (2012). doi: 10.1038/nphoton.2011.285 |
[7] | Yang Y, Miller OD, Christensen T, Joannopoulos JD, Soljačić M. Low-loss plasmonic dielectric nanoresonators. Nano Lett 17, 3238–3245 (2017). doi: 10.1021/acs.nanolett.7b00852 |
[8] | Zhang YF, Wang HM, Liao HM, Li Z, Sun CW et al. Unidirectional launching of surface plasmons at the subwavelength scale. Appl Phys Lett 105, 231101 (2014). doi: 10.1063/1.4903057 |
[9] | Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018). doi: 10.1038/s41586-018-0031-4 |
[10] | Paolo B, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys 75, 024402 (2012). doi: 10.1088/0034-4885/75/2/024402 |
[11] | Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 5, 4354 (2014). doi: 10.1038/ncomms5354 |
[12] | Alù A, Engheta N. Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 104, 213902 (2010). doi: 10.1103/PhysRevLett.104.213902 |
[13] | Sun CW, Li HY, Gong QH, Chen JJ. Plasmonic polarization-rotating emitters with metallic nanogroove antennas. Adv Opt Mater 5, 1700510 (2017). doi: 10.1002/adom.201700510 |
[14] | Wang JW, Bonneau D, Villa M, Silverstone JW, Santagati R et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016). doi: 10.1364/OPTICA.3.000407 |
[15] | Gan FY, Li HY, Chen JJ. Tailoring the emission polarization with metasurface-based emitters designed on a plasmonic ridge waveguide. Nanoscale 11, 7140–7148 (2019). doi: 10.1039/C8NR08960D |
[16] | Curto AG, Taminiau TH, Volpe G, Kreuzer MP, Quidant R et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat Commun 4, 1750 (2013). doi: 10.1038/ncomms2769 |
[17] | Geisler P, Razinskas G, Krauss E, Wu XF, Rewitz C et al. Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys Rev Lett 111, 183901 (2013). doi: 10.1103/PhysRevLett.111.183901 |
[18] | Kim J, Roh YG, Cheon S, Kim UJ, Hwang SW et al. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide. Sci Rep 5, 11832 (2015). doi: 10.1038/srep11832 |
[19] | Ren MX, Chen M, Wu W, Zhang LH, Liu JK et al. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. Nano Lett 15, 2951–2957 (2015). doi: 10.1021/nl5047973 |
[20] | Lin J, Mueller JPB, Wang Q, Yuan GG, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746 |
[21] | Vercruysse D, Zheng XZ, Sonnefraud Y, Verellen N, Di Martino G et al. Directional fluorescence emission by individual v-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014). doi: 10.1021/nn502616k |
[22] | Hancu IM, Curto AG, Castro-López M, Kuttge M, van Hulst NF. Multipolar interference for directed light emission. Nano Lett 14, 166–171 (2014). doi: 10.1021/nl403681g |
[23] | Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010). doi: 10.1126/science.1191922 |
[24] | Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi–Uda nanoantenna array. Nat Commun 2, 267 (2011). doi: 10.1038/ncomms1268 |
[25] | Obelleiro F, Taboada JM, Solís DM, Bote L. Directive antenna nanocoupler to plasmonic gap waveguides. Opt Lett 38, 1630–1632 (2013). doi: 10.1364/OL.38.001630 |
[26] | Guo YH, Pu MB, Zhao ZY, Wang YQ, Jin JJ et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[27] | Li ZP, Shegai T, Haran G, Xu HX. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637–642 (2009). doi: 10.1021/nn800906c |
[28] | Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428 |
[29] | Chen JJ, Li Z, Yue S, Gong QH. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett 11, 2933–2937 (2011). doi: 10.1021/nl201401w |
[30] | Pacifici D, Lezec HJ, Atwater HA. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1, 402–406 (2007). doi: 10.1038/nphoton.2007.95 |
[31] | MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photonics 3, 55–58 (2009). doi: 10.1038/nphoton.2008.249 |
[32] | Temnov VV, Armelles G, Woggon U, Guzatov D, Cebollada A et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat Photonics 4, 107–111 (2010). doi: 10.1038/nphoton.2009.265 |
[33] | Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9, 525–528 (2015). doi: 10.1038/nphoton.2015.127 |
[34] | Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017). doi: 10.1126/science.aan5953 |
[35] | Gan FY, Wang YJ, Sun CW, Zhang GR, Li HY et al. Widely tuning surface plasmon polaritons with laser-induced bubbles. Adv Opt Mater 5, 1600545 (2017). doi: 10.1002/adom.201600545 |
[36] | Zhao CL, Liu YM, Zhao YH, Fang N, Huang TJ. A reconfigurable plasmofluidic lens. Nat Commun 4, 2305 (2013). doi: 10.1038/ncomms3305 |
[37] | Dickson W, Wurtz GA, Evans PR, Pollard RJ, Zayats AV. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 8, 281–286 (2008). doi: 10.1021/nl072613g |
[38] | Buchnev O, Ou JY, Kaczmarek M, Zheludev NI, Fedotov VA. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt Express 21, 1633–1638 (2013). doi: 10.1364/OE.21.001633 |
[39] | Gosciniak J, Markey L, Dereux A, Bozhevolnyi SI. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides. Opt Express 20, 16300–16309 (2012). doi: 10.1364/OE.20.016300 |
[40] | Cetin AE, Mertiri A, Huang M, Erramilli S, Altug H. Thermal tuning of surface plasmon polaritons using liquid crystals. Adv Opt Mater 1, 915–920 (2013). doi: 10.1002/adom.201300303 |
[41] | Wurtz GA, Hendren W, Pollard R, Atkinson R, Le Guyader LL et al. Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field. New J Phys 10, 105012 (2008). doi: 10.1088/1367-2630/10/10/105012 |
[42] | Zhang XP, Sun BQ, Hodgkiss JM, Friend RH. Tunable ultrafast optical switching via waveguided gold nanowires. Adv Mater 20, 4455–4459 (2008). doi: 10.1002/adma.200801162 |
[43] | Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH. Submicron bidirectional all-optical plasmonic switches. Sci Rep 3, 1451 (2013). doi: 10.1038/srep01451 |
[44] | Sim S, Jang H, Koirala N, Brahlek M, Moon J et al. Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons. Nat Commun 6, 8814 (2015). doi: 10.1038/ncomms9814 |
[45] | Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370 |
[46] | Chen JJ, Li Z, Yue S, Gong QH. Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97, 041113 (2010). doi: 10.1063/1.3472251 |
[47] | Li GZ, Jia ST, Yang H, Chen JJ. Direction-controllable plasmonic color scanning by using laser-induced bubbles. Adv Funct Mater 31, 2008579 (2021). doi: 10.1002/adfm.202008579 |
[48] | Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 14, 37–43 (2020). doi: 10.1038/s41566-019-0547-7 |
[49] | Niu XX, Hu XY, Lu CC, Sheng Y, Yang H et al. Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics. Nanophotonics 9, 4609–4618 (2020). doi: 10.1515/nanoph-2020-0420 |
[50] | Zhang GR, Gu Y, Gong QH, Chen JJ. Symmetry-tailored patterns and polarizations of single-photon emission. Nanophotonics 9, 3557–3565 (2020). doi: 10.1515/nanoph-2020-0208 |
[51] | He JJ, Zheng W, Ligmajer F, Chan CF, Bao ZY et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+ hybrid core-shell-satellite nanostructures. Light Sci Appl 6, e16217 (2017). doi: 10.1038/lsa.2016.217 |
[52] | Li GC, Zhang YL, Jiang J, Luo Y, Lei DY. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano 11, 3067–3080 (2017). doi: 10.1021/acsnano.7b00048 |
(a) Circularly polarized emission light as the plasmonic emitter is covered by water (n=1.333). (b) Linearly polarized emission light as the plasmonic emitter is covered by a bubble (n=1.0) induced with a control laser beam.
(a) Structure diagram and geometry parameters of a nanogroove antenna. Simulated (b) powers, (c) polarization orientation angles, and (d) degrees of linear polarization (Dp) of the emission lights from one nanogroove antenna when the antenna is covered by different mediums with refractive indices of n=1.333 (red lines) and n=1.0 (black lines).
(a) Structure diagram and geometry parameters of the plasmonic emitter. (b) Polar plot of the simulated intensity of the emission light from the plasmonic emitter as a function of the polarization angle for n=1.333 (red line) or n=1.0 (black line) at λ=900 nm. (c) Degrees of linear polarization of the emission light from the plasmonic emitter varying with the wavelengths for n=1.333 (red line) or n=1.0 (black line).
(a) SEM image of the fabricated structure. (b) Zoomed-in SEM image of a plasmonic emitter. (c) Cross-section of a nanogroove antenna. The green lines is used to measure the thickness of the gold film and the depth of the nanogroove antenna. (d) Schematic of the measurement set-up.
(a) Captured CMOS image of the sample in air. (b) CMOS images of the emission light from the plasmonic emitter [denoted by the yellow dashed square in (a)] at different polarizer angles. (c) Polar plot of the measured intensities of the emission light from the plasmonic emitter in air by rotating the polarizer. (d) Captured CMOS image of the sample in water. (e) CMOS images of the emission light from the plasmonic emitter [yellow dashed box in (d)] at different polarizer angles. (f) Polar plot of the measured intensities of the emission light from the plasmonic emitter by rotating the polarizer at different pump intensities.
(a) CMOS image of a microbubble, which covers the sample. (b) CMOS images of the emission light from the plasmonic emitter in the microbubble at different polarizer angles. (c) Polar plot of the measured intensities of the emission light from the plasmonic emitter by rotating the polarizer in air (black), water (blue), and bubble (red). (d) Polar plot of the simulated intensities of the emission light from the plasmonic emitter at different polarizer angles when the plasmonic emitter is covered by air (black), water (blue), and bubble (red). The result in air is the same as that in the bubble, so the red line is covered by the black line.