Wen L, Nan XH, Li JX, David RSC, Hu X et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron Adv 5, 200093 (2022). doi: 10.29026/oea.2022.200093
Citation: Wen L, Nan XH, Li JX, David RSC, Hu X et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron Adv 5, 200093 (2022). doi: 10.29026/oea.2022.200093

Original Article Open Access

Broad-band spatial light modulation with dual epsilon-near-zero modes

More Information
  • Epsilon-near-zero (ENZ) modes have attracted extensive interests due to its ultrasmall mode volume resulting in extremely strong light-matter interaction (LMI) for active optoelectronic devices. The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor (MIS) configuration and therefore allow access to electro-absorption (E-A) modulation. Relying on the quantum confinement of charge-carriers in the doped semiconductor, the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A. Further, for the ENZ based spatial light modulation, the requirement of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restricted by the properties of the plasmonic or high-Q resonance systems. In this paper, we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time. Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polarities adjacent to both faces of the dielectric layer. The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner. Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth, extended spectral bandwidth together with high speed switching, thus holding great promise for achieving electrically addressed spatial light modulation in near- to mid-infrared regions.
  • 加载中
  • [1] Efron U, Liverscu G. Multiple quantum well spatial light modulators. Spatial Light Modulator Technology: Materials, Devices and Applications, Efron U, Eds. ; Dekker: New York (1995).

    Google Scholar

    [2] Savage N. Digital spatial light modulators. Nat Photonics 3, 170–172 (2009). doi: 10.1038/nphoton.2009.18

    CrossRef Google Scholar

    [3] Maurer C, Jesacher A, Bernet S, Ritsch‐Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5, 81–101 (2011). doi: 10.1002/lpor.200900047

    CrossRef Google Scholar

    [4] Zhang YB, Liu H, Cheng H, Tian JG, Chen SQ. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002

    CrossRef Google Scholar

    [5] Chen Q, Nan XH, Chen MJ, Pan DH, Yang XG et al. Nanophotonic color routing. Adv Mater 33, 2103815 (2021). doi: 10.1002/adma.202103815

    CrossRef Google Scholar

    [6] Wen L, Liang L, Yang XG, Liu Z, Li BJ et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano 13, 6963–6972 (2019). doi: 10.1021/acsnano.9b01914

    CrossRef Google Scholar

    [7] Chen Q, Liang L, Zheng QL, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [8] Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quant Electron 23, 123–129 (1987). doi: 10.1109/JQE.1987.1073206

    CrossRef Google Scholar

    [9] Alexander K, George JP, Verbist J, Neyts K, Kuyken B et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun 9, 3444 (2018). doi: 10.1038/s41467-018-05846-6

    CrossRef Google Scholar

    [10] Kuo YH, Lee YK, Ge YS, Ren S, Roth JE et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005). doi: 10.1038/nature04204

    CrossRef Google Scholar

    [11] Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020).

    Google Scholar

    [12] Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photonics 4, 518–526 (2010). doi: 10.1038/nphoton.2010.179

    CrossRef Google Scholar

    [13] Reed GT, Mashanovich GZ, Gardes FY, Nedeljkovic M, Hu YF et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3, 229–245 (2014). doi: 10.1515/nanoph-2013-0016

    CrossRef Google Scholar

    [14] Wood MG, Burr JR, Reano RM. 7 nm/V DC tunability and millivolt scale switching in silicon carrier injection degenerate band edge resonators. Opt Express 24, 23481–23493 (2016). doi: 10.1364/OE.24.023481

    CrossRef Google Scholar

    [15] Terada Y, Tatebe T, Hinakura Y, Baba T. Si photonic crystal slow-light modulators with periodic p–n junctions. J Lightw Technol 35, 1684–1692 (2017). doi: 10.1109/JLT.2017.2658668

    CrossRef Google Scholar

    [16] Timurdogan E, Sorace-Agaskar CM, Sun J, Hosseini ES, Biberman A et al. An ultralow power athermal silicon modulator. Nat Commun 5, 4008 (2014). doi: 10.1038/ncomms5008

    CrossRef Google Scholar

    [17] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9, 525–528 (2015). doi: 10.1038/nphoton.2015.127

    CrossRef Google Scholar

    [18] Dionne JA, Diest K, Sweatlock KA, Atwater HA. PlasMOStor: a metal−oxide−Si field effect plasmonic modulator. Nano Lett 9, 897–902 (2009). doi: 10.1021/nl803868k

    CrossRef Google Scholar

    [19] Hassan SA, Lisicka-Skrzek E, Olivieri A, Tait RN, Berini P. Fabrication of a plasmonic modulator incorporating an overlaid grating coupler. Nanotechnology 25, 495202 (2014). doi: 10.1088/0957-4484/25/49/495202

    CrossRef Google Scholar

    [20] Olivieri A, Chen CK, Hassan S, Lisicka-Skrzek E, Tait RN et al. Plasmonic nanostructured metal–oxide–semiconductor reflection modulators. Nano Lett 15, 2304–2311 (2015). doi: 10.1021/nl504389f

    CrossRef Google Scholar

    [21] Qiu CY, Chen CJ, Xia Y, Xu QF. Active dielectric antenna on chip for spatial light modulation. Sci Rep 2, 855 (2012). doi: 10.1038/srep00855

    CrossRef Google Scholar

    [22] Shuai YC, Zhao DY, Liu YH, Stambaugh C, Lawall J et al. Coupled bilayer photonic crystal slab electro-optic spatial light modulators. IEEE Photonics J 9, 7101411 (2017).

    Google Scholar

    [23] Zhou WD, Fan SH. Fano resonance photonic crystal filters and modulators. Semiconduct Semimet 100, 149–188 (2019).

    Google Scholar

    [24] O'brien BB, Burns BE, Hu KL, Ionescu AC. Silicon spatial light modulator. US Pat, 5170283, 1992.

    Google Scholar

    [25] Lazarev G, Hermerschmidt A, Krüger S, Osten S. LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology (Eds Osten W, Reingand N), John Wiley & Sons (2012).

    Google Scholar

    [26] Worchesky TL, Ritter KJ, Martin R, Lane B. Large arrays of spatial light modulators hybridized to silicon integrated circuits. Appl Opt 35, 1180–1186 (1996). doi: 10.1364/AO.35.001180

    CrossRef Google Scholar

    [27] Kulkarni OP, Islam MN, Terry FL. GaAs-based surface-normal optical modulator compared to Si and its wavelength response characterization using a supercontinuum laser. Opt Express 19, 4076–4084 (2011). doi: 10.1364/OE.19.004076

    CrossRef Google Scholar

    [28] Kuo YH, Lee YK, Ge YS, Ren S, Roth JE et al. Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE J Sel Top Quant Electron 12, 1503–1513 (2006). doi: 10.1109/JSTQE.2006.883146

    CrossRef Google Scholar

    [29] Audet RM, Edwards EH, Balram KC, Claussen SA, Schaevitz RK et al. Surface-Normal Ge/SiGe asymmetric Fabry–Perot optical modulators fabricated on silicon substrates. J Lightw Technol 31, 3995–4003 (2013). doi: 10.1109/JLT.2013.2279174

    CrossRef Google Scholar

    [30] Yang YM, Lu J, Manjavacas A, Luk TS, Liu HZ et al. High-harmonic generation from an epsilon-near-zero material. Nat Phys 15, 1022–1026 (2019). doi: 10.1038/s41567-019-0584-7

    CrossRef Google Scholar

    [31] Babicheva VE, Boltasseva A, Lavrinenko AV. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4, 165–185 (2015). doi: 10.1515/nanoph-2015-0004

    CrossRef Google Scholar

    [32] Hendrickson JR, Vangala S, Dass C, Gibson R, Goldsmith J et al. Coupling of epsilon-near-zero mode to gap Plasmon Mode for flat-top wideband perfect light absorption. ACS Photonics 5, 776–781 (2018). doi: 10.1021/acsphotonics.7b01491

    CrossRef Google Scholar

    [33] Gao Q, Li EW, Wang AX. Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Opt Mater Express 8, 2850–2862 (2018). doi: 10.1364/OME.8.002850

    CrossRef Google Scholar

    [34] Chen Q, Song SC, Wang HC, Liang L, Dong YJ et al. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. Nano Res 14, 2673–2680 (2021). doi: 10.1007/s12274-020-3271-1

    CrossRef Google Scholar

    [35] Nemati A, Wang Q, Ang NSS, Wang WD, Hong MH et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron Adv 4, 200088 (2021). doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [36] Krasavin AV, Zayats AV. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys Rev Lett 109, 053901 (2012). doi: 10.1103/PhysRevLett.109.053901

    CrossRef Google Scholar

    [37] Wood MG, Campione S, Parameswaran S, Luk TS, Wendt JR et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233–236 (2018). doi: 10.1364/OPTICA.5.000233

    CrossRef Google Scholar

    [38] Amin R, Maiti R, Carfano C, Ma ZZ, Tahersima MH et al. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 3, 126104 (2018). doi: 10.1063/1.5052635

    CrossRef Google Scholar

    [39] Li EW, Gao Q, Chen RT, Wang AX. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 Lambda-Cubic active volume. Nano Lett 18, 1075–1081 (2018). doi: 10.1021/acs.nanolett.7b04588

    CrossRef Google Scholar

    [40] Park J, Kang JH, Liu XG, Brongersma ML. Electrically tunable Epsilon-Near-Zero (ENZ) Metafilm absorbers. Sci Rep 5, 15754 (2015). doi: 10.1038/srep15754

    CrossRef Google Scholar

    [41] Shi KF, Haque RR, Zhao BY, Zhao RC, Lu ZL. Broadband electro-optical modulator based on transparent conducting oxide. Opt Lett 39, 4978–4981 (2014). doi: 10.1364/OL.39.004978

    CrossRef Google Scholar

    [42] Liu XG, Kang JH, Yuan HT, Park J, Kim SJ et al. Electrical tuning of a quantum plasmonic resonance. Nat Nanotechnol 12, 866–870 (2017). doi: 10.1038/nnano.2017.103

    CrossRef Google Scholar

    [43] Liu XG, Kang JH, Yuan HT, Park J, Cui Y et al. Tuning of Plasmons in transparent conductive oxides by carrier accumulation. ACS Photonics 5, 1493–1498 (2018). doi: 10.1021/acsphotonics.7b01517

    CrossRef Google Scholar

    [44] Hu X, Chen Q, Wen L, Jin L, Wang HC et al. Modulating spatial light by grating slot waveguides with transparent conducting oxides. IEEE Photonic Technol Lett 28, 1665–1668 (2016). doi: 10.1109/LPT.2016.2565507

    CrossRef Google Scholar

    [45] Howes A, Wang WY, Kravchenko I, Valentine J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018). doi: 10.1364/OPTICA.5.000787

    CrossRef Google Scholar

    [46] Lalanne P, Lemercier-Lalanne D. Depth dependence of the effective properties of subwavelength gratings. J Opt Soc Am A 14, 450–459 (1997). doi: 10.1364/JOSAA.14.000450

    CrossRef Google Scholar

  • Supplementary information for Broad-band spatial light modulation with dual epsilon-near-zero modes
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint