Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076
Citation: Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

Original Article Open Access

Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography

More Information
  • A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing. The compact size and large evanescent field of microfiber provide an excellent platform for the interaction between optical signal and ultrasound wave, exhibiting a high sensitivity of 3.5 mV/kPa, which is approximately 10 times higher than the single-mode fiber sensor. Meanwhile, a phase feedback stabilization module is introduced into the coherent demodulation system for long-term stable measurement. In addition, a photoacoustic tomography experiment with the microfiber ultrasound sensor is implemented to verify the excellent performance on imaging, with the depth of 12 mm, the highest lateral resolution of 65 μm and axial resolution of 250 μm, respectively. The highly sensitive microfiber ultrasound sensor provides a competitive alternative for various applications, such as industrial non-destructive testing, biomedical ultrasound and photoacoustic imaging.
  • 加载中
  • [1] Li C, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54, R59–97 (2009). doi: 10.1088/0031-9155/54/19/R01

    CrossRef Google Scholar

    [2] Beard P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). doi: 10.1098/rsfs.2011.0028

    CrossRef Google Scholar

    [3] Powers J, Kremkau F. Medical ultrasound systems. Interface focus 1, 477–489 (2011). doi: 10.1098/rsfs.2011.0027

    CrossRef Google Scholar

    [4] Le Jeune L, Robert S, Villaverde EL, Prada C. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging. Ultrasonics 64, 128–138 (2016). doi: 10.1016/j.ultras.2015.08.008

    CrossRef Google Scholar

    [5] Drinkwater BW, Wilcox PD. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int 39, 525–541 (2006). doi: 10.1016/j.ndteint.2006.03.006

    CrossRef Google Scholar

    [6] Hekmati A, Hekmati R. Optimum acoustic sensor placement for partial discharge allocation in transformers. IET Sci Meas Technol 11, 581–589 (2017). doi: 10.1049/iet-smt.2016.0417

    CrossRef Google Scholar

    [7] Sarkar B, Mishra DK, Koley C, Roy NK, Biswas P. Intensity-Modulated Fiber Bragg Grating Sensor for Detection of Partial Discharges Inside High-Voltage Apparatus. IEEE Sens J 16, 7950–7957 (2016). doi: 10.1109/JSEN.2016.2608743

    CrossRef Google Scholar

    [8] Janapati V, Kopsaftopoulos F, Li F, Lee SJ, Chang FK. Damage detection sensitivity characterization of acousto-ultrasound-based structural health monitoring techniques. Structural Health Monitoring-an International Journal 15, 143–161 (2016). doi: 10.1177/1475921715627490

    CrossRef Google Scholar

    [9] Qiu YQ, Gigliotti JV, Wallace M, Griggio F, Demore CEM et al. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors 15, 8020–8041 (2015). doi: 10.3390/s150408020

    CrossRef Google Scholar

    [10] Xia WF, Piras D, van Hespen JCG, van Veldhoven S, Prins C et al. An optimized ultrasound detector for photoacoustic breast tomography. Med Phys 40, 13 (2013).

    Google Scholar

    [11] Rosenthal A, Razansky D, Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt Lett 36, 1833–1835 (2011). doi: 10.1364/OL.36.001833

    CrossRef Google Scholar

    [12] Guggenheim JA, Li J, Allen TJ, Colchester RJ, Noimark S et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat Photonics 11, 714–719 (2017). doi: 10.1038/s41566-017-0027-x

    CrossRef Google Scholar

    [13] Ma XD, Cai YQ, Fu B, Xu LJ, Ma JG. Fiber optic-based laser interferometry array for three-dimensional ultrasound sensing. Opt Lett 44, 5852–5855 (2019). doi: 10.1364/OL.44.005852

    CrossRef Google Scholar

    [14] Wang XX, Jiang YH, Li ZY, Wang W, Li ZB. Sensitivity Characteristics of Microfiber Fabry-Perot Interferometric Photoacoustic Sensors. J Lightwave Technol 37, 4229–4235 (2019). doi: 10.1109/JLT.2019.2922223

    CrossRef Google Scholar

    [15] Bai X, Qi Y, Liang Y, Ma J, Jin L et al. Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor. Biomedical Optics Express 10, 2504–2512 (2019). doi: 10.1364/BOE.10.002504

    CrossRef Google Scholar

    [16] Fan HB, Zhang L, Gao S, Chen L, Bao XY. Ultrasound sensing based on an in-fiber dual-cavity Fabry-Perot interferometer. Opt Lett 44, 3606–3609 (2019). doi: 10.1364/OL.44.003606

    CrossRef Google Scholar

    [17] Bauer-Marschallinger J, Felbermayer K, Berer T. All-optical photoacoustic projection imaging. Biomed Opt Express 8, 3938–3951 (2017). doi: 10.1364/BOE.8.003938

    CrossRef Google Scholar

    [18] Nuster R, Gratt S, Passler K, Grun H, Berer T et al. Comparison of optical and piezoelectric integrating line detectors. Photons Plus Ultrasound: Imaging and Sensing 2009, edn, 7177, (Spie-Int Soc Optical Engineering, Bellingham, 2009).

    Google Scholar

    [19] Lamela H, Gallego D, Oraevsky A. Optoacoustic imaging using fiber-optic interferometric sensors. Opt Lett 34, 3695–3697 (2009). doi: 10.1364/OL.34.003695

    CrossRef Google Scholar

    [20] Bauer-Marschallinger J, Höllinger A, Jakoby B, Burgholzer P, Berer T. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy. Photoacoustics 5, 1–9 (2017). doi: 10.1016/j.pacs.2017.01.001

    CrossRef Google Scholar

    [21] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Adv 3, 190022 (2020). doi: 10.29026/oea.2020.190022

    CrossRef Google Scholar

    [22] Tong L, Gattass RR, Ashcom JB, He S, Lou J et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003). doi: 10.1038/nature02193

    CrossRef Google Scholar

    [23] Zhang Z, Pan J, Tang Y, Xu Y, Zhang L et al. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips. Lab on a Chip 20, 2572–2579 (2020). doi: 10.1039/D0LC00178C

    CrossRef Google Scholar

    [24] Zhang NMY, Li KW, Zhang N, Zheng Y, Zhang T et al. Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Optics Express 26, 29148–29158 (2018). doi: 10.1364/OE.26.029148

    CrossRef Google Scholar

    [25] Fan H, Chen L, Bao X. Chalcogenide microfiber-assisted silica microfiber for ultrasound detection. Opt Lett 45, 1128–1131 (2020). doi: 10.1364/OL.383238

    CrossRef Google Scholar

    [26] Stewart G. Optical waveguide theory. (Chapman and Hall, 1983).

    Google Scholar

    [27] Beard PC, Hurrell AM, Mills TN. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 47, 256–264 (2000). doi: 10.1109/58.818769

    CrossRef Google Scholar

    [28] Lu QB, Liu T, Ding L, Lu MH, Zhu J et al. Probing the Spatial Impulse Response of Ultrahigh-Frequency Ultrasonic Transducers with Photoacoustic Waves. Physical Review Applied 14, 034026 (2020). doi: 10.1103/PhysRevApplied.14.034026

    CrossRef Google Scholar

    [29] Treeby BE, Cox BT. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics 15, 021314 (2010). doi: 10.1117/1.3360308

    CrossRef Google Scholar

    [30] Li G, Guo Z, Chen SL. Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging. Optics Express 25, 25023–25035 (2017). doi: 10.1364/OE.25.025023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(6766) PDF downloads(1244) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint