Zhang DS, Li XZ, Fu Y, Yao QH, Li ZG et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066 (2022). doi: 10.29026/oea.2022.210066
Citation: Zhang DS, Li XZ, Fu Y, Yao QH, Li ZG et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066 (2022). doi: 10.29026/oea.2022.210066

Original Article Open Access

Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS

More Information
  • Orientations of laser induced periodic surface structures (LIPSS) are usually considered to be governed by the laser polarization state. In this work, we unveil that fluid dynamics induced by femtosecond (fs) laser ablation in liquid (fs-LAL) can easily break this polarization restriction to produce irregular circular-LIPSS (CLIPPS) and crisscross-LIPSS (CCLIPSS). Fs laser ablation of silicon in water shows formation of diverse LIPSS depending on ablation conditions. At a high power of 700 mW (repetition rate of 100 kHz, pulse duration of 457 fs and wavelength of 1045 nm), single/twin CLIPSS are produced at the bottom of macropores of several microns in diameter due to the formation of strong liquid vortexes and occurrence of the vortex shedding effect. Theoretical simulations validate our speculation about the formation of liquid vortex with an ultrahigh static pressure, which can induce the microstructure trenches and cracks at the sidewalls for fs-LAL of Si and tungsten (W) in water, respectively. At a low power of 50 mW, weak liquid vortexes are produced, which only give birth to curved LIPSS in the valleys of grooves. Consequently, it is deduced that liquid vortex plays a crucial role in the formation of macropores. Mountain-like microstructures induce complex fluid dynamics which can cause the formation of CCLIPSS on them. It is believed that liquid vortexes and fluid dynamics presented in this work open up new possibilities to diversify the morphologies of LIPSS formed by fs-LAL.
  • 加载中
  • [1] Phillips KC, Gandhi HH, Mazur E, Sundaram SK. Ultrafast laser processing of materials: a review. Adv Opt Photonics 7, 684–712 (2015). doi: 10.1364/AOP.7.000684

    CrossRef Google Scholar

    [2] Li L, Hong MH, Schmidt M, Zhong ML, Malshe A et al. Laser nano-manufacturing–state of the art and challenges. CIRP Ann 60, 735–755 (2011). doi: 10.1016/j.cirp.2011.05.005

    CrossRef Google Scholar

    [3] Zhang DS, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117, 3990–4103 (2017). doi: 10.1021/acs.chemrev.6b00468

    CrossRef Google Scholar

    [4] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [5] Zhou R, Zhang Z, Hong MH. The art of laser ablation in aeroengine: the crown jewel of modern industry. J Appl Phys 127, 080902 (2020). doi: 10.1063/1.5134813

    CrossRef Google Scholar

    [6] Grigoropoulos CP. Laser synthesis and functionalization of nanostructures. Int J Extrem Manuf 1, 012002 (2019). doi: 10.1088/2631-7990/ab0eca

    CrossRef Google Scholar

    [7] Palneedi H, Park JH, Maurya D, Peddigari M, Hwang GT et al. Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater 30, 1705148 (2018). doi: 10.1002/adma.201705148

    CrossRef Google Scholar

    [8] Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021).

    Google Scholar

    [9] Zhang D, Liu R, Li Z. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int J Extrem Manuf 4, 015102 (2022).

    Google Scholar

    [10] Zhang D, Ranjan B, Tanaka T, Sugioka K. Carbonized Hybrid Micro/Nanostructured Metasurfaces Produced by Femtosecond Laser Ablation in Organic Solvents for Biomimetic Antireflective Surfaces. ACS Appl Nano Mater 3, 1855–1871 (2020).

    Google Scholar

    [11] Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [12] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [13] Liu R, Zhang DS, Li Z G. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications. J Mater Sci Technol 89, 179–185 (2021). doi: 10.1016/j.jmst.2021.02.024

    CrossRef Google Scholar

    [14] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [15] Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021).

    Google Scholar

    [16] Stratakis E, Bonse J, Heitz J, Siegel J, Tsibidis GD et al. Laser engineering of biomimetic surfaces. Mater Sci Eng R Rep 141, 100562 (2020). doi: 10.1016/j.mser.2020.100562

    CrossRef Google Scholar

    [17] Shukla P, Waugh DG, Lawrence J, Vilar R. Laser surface structuring of ceramics, metals and polymers for biomedical applications: a review. Vilar R, ed. Laser Surface Modification of Biomaterials. 281–299 (Elsevier, 2016).

    Google Scholar

    [18] Zhang DS, Ranjan B, Tanaka T, Sugioka K. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring. Int J Extrem Manuf 2, 015001 (2020). doi: 10.1088/2631-7990/ab729f

    CrossRef Google Scholar

    [19] Zhao LL, Liu Z, Chen D, Liu F, Yang Z et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett 13, 49 (2021). doi: 10.1007/s40820-020-00577-0

    CrossRef Google Scholar

    [20] Wu ZP, Yin K, Wu JR, Zhu Z, Duan JA et al. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. Nanoscale 13, 2209–2226 (2021). doi: 10.1039/D0NR06639G

    CrossRef Google Scholar

    [21] Wang XD, Yu HB, Li PW, Zhang YZ, Wen YD et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Opt Laser Technol 135, 106687 (2021). doi: 10.1016/j.optlastec.2020.106687

    CrossRef Google Scholar

    [22] Han JD, Zhang F, van Meerbeek B, Vleugels J, Braem A et al. Laser surface texturing of zirconia-based ceramics for dental applications: a review. Mater Sci Eng C 123, 112034 (2021). doi: 10.1016/j.msec.2021.112034

    CrossRef Google Scholar

    [23] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photon Rev 14, 1900407 (2020). doi: 10.1002/lpor.201900407

    CrossRef Google Scholar

    [24] Zhang YY, Jiao YL, Li CZ, Chen C, Li JW et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. Int J Extrem Manuf 2, 032002 (2020). doi: 10.1088/2631-7990/ab95f6

    CrossRef Google Scholar

    [25] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020).

    Google Scholar

    [26] Wan ZF, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv 4, 200079 (2021).

    Google Scholar

    [27] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021).

    Google Scholar

    [28] Maksimovic J, Ng SH, Katkus T, Cowie BCC, Juodkazis S. External field-controlled ablation: magnetic field. Nanomaterials 9, 1662 (2019). doi: 10.3390/nano9121662

    CrossRef Google Scholar

    [29] Maksimovic J, Ng SH, Katkus T, Le NHA, Chon JWM et al. Ablation in externally applied electric and magnetic fields. Nanomaterials 10, 182 (2020). doi: 10.3390/nano10020182

    CrossRef Google Scholar

    [30] Zhang DS, Wu LC, Ueki M, Ito Y, Sugioka K. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. Int J Extrem Manuf 2, 045001 (2020). doi: 10.1088/2631-7990/abb5f3

    CrossRef Google Scholar

    [31] Dittrich S, Barcikowski S, Gökce B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron Adv 4, 200072 (2021).

    Google Scholar

    [32] Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J Sel Top Quantum Electron 23, 9000615 (2017).

    Google Scholar

    [33] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quantum Electron 38, 119–156 (2014). doi: 10.1016/j.pquantelec.2014.03.002

    CrossRef Google Scholar

    [34] Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys 36, 3688–3689 (1965). doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [35] Tan DZ, Sharafudeen KN, Yue YZ, Qiu JR. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002

    CrossRef Google Scholar

    [36] Cerkauskaite A, Drevinskas R, Solodar A, Abdulhalim I, Kazansky PG. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 (2017). doi: 10.1021/acsphotonics.7b01082

    CrossRef Google Scholar

    [37] Lam B, Zhang JH, Guo CL. Generation of continuously rotating polarization by combining cross-polarizations and its application in surface structuring. Opt Lett 42, 2870–2873 (2017). doi: 10.1364/OL.42.002870

    CrossRef Google Scholar

    [38] Han WN, Jiang L, Li XW, Liu PJ, Xu L et al. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt Express 21, 15505–15513 (2013). doi: 10.1364/OE.21.015505

    CrossRef Google Scholar

    [39] Reinhardt H, Kim HC, Pietzonka C, Kruempelmann J, Harbrecht B et al. Self-organization of multifunctional surfaces – the fingerprints of light on a complex system. Adv Mater 25, 3313–3318 (2013). doi: 10.1002/adma.201205031

    CrossRef Google Scholar

    [40] Dusser B, Sagan Z, Soder H, Faure N, Colombier JP et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [41] Varlamova O, Costache F, Reif J, Bestehorn M. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl Surf Sci 252, 4702–4706 (2006). doi: 10.1016/j.apsusc.2005.08.120

    CrossRef Google Scholar

    [42] Han W, Liu F, Yuan Y, Li X, Wang Q et al. Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure. Nanotechnology 29, 305301 (2018). doi: 10.1088/1361-6528/aac282

    CrossRef Google Scholar

    [43] Romashevskiy SA, Ashitkov SI, Agranat MB. Circular ripple patterns on silicon induced by bubble-diffracted femtosecond laser pulses in liquid. Opt Lett 45, 1005–1008 (2020). doi: 10.1364/OL.385672

    CrossRef Google Scholar

    [44] Ouyang J, Perrie W, Allegre OJ, Heil T, Jin Y et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt Express 23, 12562–12572 (2015). doi: 10.1364/OE.23.012562

    CrossRef Google Scholar

    [45] Cheng HC, Li P, Liu S, Chen P, Han L et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Appl Phys Lett 111, 141901 (2017). doi: 10.1063/1.4994926

    CrossRef Google Scholar

    [46] Nivas JJ, He ST, Song ZM, Rubano A, Vecchione A et al. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl Surf Sci 418, 565–571 (2017). doi: 10.1016/j.apsusc.2016.10.162

    CrossRef Google Scholar

    [47] Tsibidis GD, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172–5175 (2015). doi: 10.1364/OL.40.005172

    CrossRef Google Scholar

    [48] Zhang DS, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019).

    Google Scholar

    [49] Tsibidis GD, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405 (2015). doi: 10.1103/PhysRevB.92.041405

    CrossRef Google Scholar

    [50] Zhang DS, Chen F, Yang Q, Yong JL, Bian H et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl Mater Interfaces 4, 4905–4912 (2012). doi: 10.1021/am3012388

    CrossRef Google Scholar

    [51] Zhang DS, Ranjan B, Tanaka T, Sugioka K. Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection. Nanomaterials 10, 1573 (2020). doi: 10.3390/nano10081573

    CrossRef Google Scholar

    [52] Nguyen TTP, Tanabe-Yamagishi R, Ito Y. Impact of liquid layer thickness on the dynamics of nano- to sub-microsecond phenomena of nanosecond pulsed laser ablation in liquid. Appl Surf Sci 470, 250–258 (2019). doi: 10.1016/j.apsusc.2018.10.160

    CrossRef Google Scholar

    [53] Letzel A, Santoro M, Frohleiks J, Ziefuß AR, Reich S et al. How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids. Appl Surf Sci 473, 828–837 (2018).

    Google Scholar

    [54] Zhang DS, Gökce B, Sommer S, Streubel R, Barcikowski S. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl Surf Sci 367, 222–230 (2016). doi: 10.1016/j.apsusc.2016.01.071

    CrossRef Google Scholar

    [55] Florian C, Déziel JL, Kirner SV, Siegel J, Bonse J. The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures. Nanomaterials 10, 147 (2020). doi: 10.3390/nano10010147

    CrossRef Google Scholar

    [56] Long JY, Eliceiri MH, Ouyang YX, Zhang YK, Xie XZ et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt Lasers Eng 137, 106334 (2021). doi: 10.1016/j.optlaseng.2020.106334

    CrossRef Google Scholar

    [57] Zeng XZ, Mao XL, Mao SS, Wen SB, Greif R et al. Laser-induced shockwave propagation from ablation in a cavity. Appl Phys Lett 88, 061502 (2006). doi: 10.1063/1.2172738

    CrossRef Google Scholar

    [58] Shen MY, Crouch CH, Carey JE, Younkin R, Mazur E et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl Phys Lett 82, 1715–1717 (2003). doi: 10.1063/1.1561162

    CrossRef Google Scholar

    [59] Shih CY, Streubel R, Heberle J, Letzel A, Shugaev MV et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018). doi: 10.1039/C7NR08614H

    CrossRef Google Scholar

    [60] Sedao X, Shugaev MV, Wu CP, Douillard T, Esnouf C et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10, 6995–7007 (2016). doi: 10.1021/acsnano.6b02970

    CrossRef Google Scholar

    [61] Xu YZ, Zhu HR, Zheng J. Effect of Knudsen number on microscale similar flow characteristics. J Aerosp Power 28, 1752–1758 (2013).

    Google Scholar

    [62] Tanabe R, Nguyen TTP, Sugiura T, Ito Y. Bubble dynamics in metal nanoparticle formation by laser ablation in liquid studied through high-speed laser stroboscopic videography. Appl Surf Sci 351, 327–331 (2015). doi: 10.1016/j.apsusc.2015.05.030

    CrossRef Google Scholar

    [63] Nakagawa A, Kumabe T, Ogawa Y, Hirano T, Kawaguchi T et al. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application. Shock Waves 27, 1–14 (2017). doi: 10.1007/s00193-016-0696-2

    CrossRef Google Scholar

    [64] Gad-el-Hak M. The fluid mechanics of microdevices—the freeman scholar lecture. J Fluids Eng 121, 5–33 (1999). doi: 10.1115/1.2822013

    CrossRef Google Scholar

    [65] Nguyen TTP, Tanabe R, Ito Y. Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique. Appl Phys Lett 102, 124103 (2013). doi: 10.1063/1.4798532

    CrossRef Google Scholar

    [66] Babenko VA, Bunkin NF, Sychev AA. Role of gas nanobubbles in nonlinear hyper-Raman scattering of light in water. J Opt Soc Am B 37, 2805–2814 (2020). doi: 10.1364/JOSAB.398496

    CrossRef Google Scholar

    [67] Namura K, Imafuku S, Kumar S, Nakajima K, Sakakura M et al. Direction control of quasi-stokeslet induced by thermoplasmonic heating of a water vapor microbubble. Sci Rep 9, 4770 (2019). doi: 10.1038/s41598-019-41255-5

    CrossRef Google Scholar

    [68] Derrien TJY, Koter R, Krüger J, Höhm S, Rosenfeld A et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J Appl Phys 116, 074902 (2014). doi: 10.1063/1.4887808

    CrossRef Google Scholar

    [69] Stratakis E, Zorba V, Barberoglou M, Fotakis C, Shafeev GA. Laser writing of nanostructures on bulk Al via its ablation in liquids. Nanotechnology 20, 105303 (2009). doi: 10.1088/0957-4484/20/10/105303

    CrossRef Google Scholar

    [70] Bonse J. Quo vadis LIPSS?—recent and future trends on laser-induced periodic surface structures. Nanomaterials 10, 1950 (2020). doi: 10.3390/nano10101950

    CrossRef Google Scholar

    [71] Bonse J, Gräf S. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev 14, 2000215 (2020). doi: 10.1002/lpor.202000215

    CrossRef Google Scholar

    [72] Ji LF, Lv XZ, Wu Y, Lin ZY, Jiang YJ. Hydrophobic light-trapping structures fabricated on silicon surfaces by picosecond laser texturing and chemical etching. J Photonics Energy 5, 053094 (2015). doi: 10.1117/1.JPE.5.053094

    CrossRef Google Scholar

    [73] Zhang CY, Yao JW, Liu HY, Dai QF, Wu LJ et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses. Opt Lett 37, 1106–1108 (2012). doi: 10.1364/OL.37.001106

    CrossRef Google Scholar

    [74] Liu HG, Lin WX, Lin ZY, Ji LF, Hong MH. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect. Adv Funct Mater 29, 1903576 (2019). doi: 10.1002/adfm.201903576

    CrossRef Google Scholar

    [75] Yuan DQ, Wu QR, Xu JT, Zhou M, Yang HF. Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser. J Opt Technol 82, 353–356 (2015). doi: 10.1364/JOT.82.000353

    CrossRef Google Scholar

    [76] Perry AE, Chong MS, Lim TT. The vortex-shedding process behind two-dimensional bluff bodies. J Fluid Mech 116, 77–90 (1982). doi: 10.1017/S0022112082000378

    CrossRef Google Scholar

    [77] Akram M, Bashir S, Rafique MS, Hayat A, Mahmood K et al. Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances. Appl Phys A 119, 859–870 (2015). doi: 10.1007/s00339-015-9052-0

    CrossRef Google Scholar

    [78] Gu DD, Guo M, Zhang HM, Sun YX, Wang R et al. Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extrem Manuf 2, 025001 (2020). doi: 10.1088/2631-7990/ab7b00

    CrossRef Google Scholar

    [79] Tuerke F, Pastur LR, Sciamarella D, Lusseyran F, Artana G. Experimental study of double-cavity flow. Exp Fluids 58, 76 (2017). doi: 10.1007/s00348-017-2360-8

    CrossRef Google Scholar

    [80] Liu Y, Cui J, Jiang YX, Li WZ. A numerical study on heat transfer performance of microchannels with different surface microstructures. Appl Therm Eng 31, 921–931 (2011). doi: 10.1016/j.applthermaleng.2010.11.015

    CrossRef Google Scholar

    [81] Wang W, Zhang YN, Li BX, Han HZ, Gao XY. Influence of geometrical parameters on turbulent flow and heat transfer characteristics in outward helically corrugated tubes. Energy Convers Manag 136, 294–306 (2017). doi: 10.1016/j.enconman.2017.01.029

    CrossRef Google Scholar

    [82] Nivas JJ, He ST, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929

    CrossRef Google Scholar

    [83] Lou K, Qian SX, Wang XL, Li YN, Gu B et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Opt Express 20, 120–127 (2012). doi: 10.1364/OE.20.000120

    CrossRef Google Scholar

    [84] Han WN, Li DF, Liu FR, Yuan YP, Li XW. Controllable formation of si nanostructures based on quasi-plasmonic planar nanostructures formed by annular-shaped femtosecond laser pulse. IEEE Photonics J 11, 2400208 (2019).

    Google Scholar

    [85] Ben-Yakar A, Byer RL, Harkin A, Ashmore J, Stone HA et al. Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Appl Phys Lett 83, 3030–3032 (2003). doi: 10.1063/1.1619560

    CrossRef Google Scholar

    [86] Ben-Yakar A, Harkin A, Ashmore J, Byer RL, Stone HA. Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J Phys D Appl Phys 40, 1447–1459 (2007). doi: 10.1088/0022-3727/40/5/021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(11679) PDF downloads(1041) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint