Zhu LW, Cao YY, Chen QQ, Ouyang X, Xu Y et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron Adv 4, 210002 (2021). doi: 10.29026/oea.2021.210002
Citation: Zhu LW, Cao YY, Chen QQ, Ouyang X, Xu Y et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron Adv 4, 210002 (2021) . doi: 10.29026/oea.2021.210002

Original Article Open Access

Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods

More Information
  • Encoding information in light polarization is of great importance in facilitating optical data storage (ODS) for information security and data storage capacity escalation. However, despite recent advances in nanophotonic techniques vastly enhancing the feasibility of applying polarization channels, the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process, which gravely hindered the utilization of this technique in practice. In this paper, we demonstrate an ultra-low crosstalk polarization-encoding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocomposite film involving highly aligned gold nanorods (GNRs). With parallelizing the gold nanorods in the recording medium, the information carrier configuration minimizes miswriting and misreading possibilities for information input and output, respectively, compared with its randomly self-assembled counterparts. The enhanced data accuracy has significantly improved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99. It is anticipated that the demonstrated technique can facilitate the development of multiplexing ODS for a greener future.
  • 加载中
  • [1] Zhang QM, Xia ZL, Cheng YB, Gu M. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites. Nat Commun 9, 1183 (2018). doi: 10.1038/s41467-018-03589-y

    CrossRef Google Scholar

    [2] Gu M, Zhang QM, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater 1, 16070 (2016). doi: 10.1038/natrevmats.2016.70

    CrossRef Google Scholar

    [3] Lin SS, Lin H, Ma CG, Cheng Y, Ye SZ et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light: Sci Appl 9, 22 (2020). doi: 10.1038/s41377-020-0258-3

    CrossRef Google Scholar

    [4] Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light:Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [5] Lin X, Liu J P, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto‐Electron Adv 3, 190004 (2020). doi: 10.29026/oea.2020.190004

    CrossRef Google Scholar

    [6] Li XP, Cao YY, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett 36, 2510–2512 (2011). doi: 10.1364/OL.36.002510

    CrossRef Google Scholar

    [7] Li XP, Venugopalan P, Ren HR, Hong MH, Gu M. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam. Opt Lett 39, 5961–5964 (2014). doi: 10.1364/OL.39.005961

    CrossRef Google Scholar

    [8] Gan ZS, Cao YY, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 4, 2061 (2013). doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [9] Gan ZS, Turner MD, Gu M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci Adv 2, e1600084 (2016). doi: 10.1126/sciadv.1600084

    CrossRef Google Scholar

    [10] Li XP, Cao YY, Tian N, Fu L, Gu M. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2, 567–570 (2015). doi: 10.1364/OPTICA.2.000567

    CrossRef Google Scholar

    [11] Wiecha PR, Lecestre A, Mallet N, Larrieu G. Pushing the limits of optical information storage using deep learning. Nat Nanotechnol 14, 237–244 (2019). doi: 10.1038/s41565-018-0346-1

    CrossRef Google Scholar

    [12] Zhuang YX, Wang L, Lv Y, Zhou TL, Xie RJ. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv Funct Mater 28, 1705769 (2018). doi: 10.1002/adfm.201705769

    CrossRef Google Scholar

    [13] Macias-Romero C, Munro PRT, Török P. Polarization-multiplexed encoding at nanometer scales. Opt Express 22, 26240–26245 (2014). doi: 10.1364/OE.22.026240

    CrossRef Google Scholar

    [14] Hu YL, Zhang ZS, Chen YH, Zhang QJ, Huang WH. Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film. Opt Lett 35, 46–48 (2010). doi: 10.1364/OL.35.000046

    CrossRef Google Scholar

    [15] Taylor AB, Michaux P, Mohsin ASM, Chon JWM. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt Express 22, 13234–13243 (2014). doi: 10.1364/OE.22.013234

    CrossRef Google Scholar

    [16] Ouyang X, Xu Y, Feng ZW, Tang WY, Cao YY et al. Polychromatic and polarized multilevel optical data storage. Nanoscale 11, 2447–2452 (2019). doi: 10.1039/C8NR09192G

    CrossRef Google Scholar

    [17] Liu HC, Jayakumar MKG, Huang K, Wang Z, Zheng X et al. Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications. Nanoscale 9, 1676–1686 (2017). doi: 10.1039/C6NR09349C

    CrossRef Google Scholar

    [18] Zu S, Han TY, Jiang ML, Lin F, Zhu X et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures. ACS Nano 12, 3908–3916 (2018). doi: 10.1021/acsnano.8b01380

    CrossRef Google Scholar

    [19] Han TY, Zu S, Li ZW, Jiang ML, Zhu X et al. Reveal and control of chiral cathodoluminescence at subnanoscale. Nano Lett 18, 567–572 (2018). doi: 10.1021/acs.nanolett.7b04705

    CrossRef Google Scholar

    [20] Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053

    CrossRef Google Scholar

    [21] Hu YL, Wu D, Li JW, Huang WH, Chu JR. Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory. Opt Express 24, 23557–23565 (2016). doi: 10.1364/OE.24.023557

    CrossRef Google Scholar

    [22] Hu YL, Chen YH, Li JW, Hu DQ, Chu JR et al. Femtosecond laser induced surface deformation in multi-dimensional data storage. Appl Phys Lett 101, 251116 (2012). doi: 10.1063/1.4772937

    CrossRef Google Scholar

    [23] Chen WT, Wu PC, Chen CJ, Weng CJ, Lee HC et al. Manipulation of multidimensional plasmonic spectra for information storage. Appl Phys Lett 98, 171106 (2011). doi: 10.1063/1.3584020

    CrossRef Google Scholar

    [24] Zheng YB, Liu HY, Xiang J, Dai QF, Ouyang M et al. Hot luminescence from gold nanoflowers and its application in high-density optical data storage. Opt Express 25, 9262–9275 (2017). doi: 10.1364/OE.25.009262

    CrossRef Google Scholar

    [25] Liu D, Yuan LF, Jin YH, Wu HY, Lv Y et al. Tailoring multidimensional traps for rewritable multilevel optical data storage. ACS Appl Mater Interfaces 11, 35023–35029 (2019). doi: 10.1021/acsami.9b13011

    CrossRef Google Scholar

    [26] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [27] Li XP, Lan TH, Tien CH, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [28] Dai QF, Ouyang M, Yuan WG, Li JX, Guo BH et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv Mater 29, 1701918 (2017). doi: 10.1002/adma.201701918

    CrossRef Google Scholar

    [29] Li JX, Xu Y, Dai QF, Lan S, Tie SL. Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling. Laser Photonics Rev 10, 826–834 (2016). doi: 10.1002/lpor.201600143

    CrossRef Google Scholar

    [30] Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD et al. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7, 3324–3331 (2013). doi: 10.1021/nn400028p

    CrossRef Google Scholar

    [31] Li D, Babel A, Jenekhe SA, Xia Y. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater 16, 2062–2066 (2004). doi: 10.1002/adma.200400606

    CrossRef Google Scholar

    [32] Ye XC, Gao YZ, Chen J, Reifsnyder DC, Zheng C et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13, 2163–2171 (2013). doi: 10.1021/nl400653s

    CrossRef Google Scholar

    [33] Baida H, Mongin D, Christofilos D, Bachelier G, Crut A et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys Rev Lett 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402

    CrossRef Google Scholar

    [34] Link S, Burda C, Nikoobakht B, El-Sayed MA. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104, 6152–6163 (2000). doi: 10.1021/jp000679t

    CrossRef Google Scholar

    [35] Ma ZJ, Hu ZL, Zhang H, Peng MY, He X et al. Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers. J Mater Chem C 4, 1029–1038 (2016). doi: 10.1039/C5TC04017E

    CrossRef Google Scholar

    [36] Ditlbacher H, Krenn JR, Lamprecht B, Leitner A, Aussenegg FR. Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25, 563–565 (2000). doi: 10.1364/OL.25.000563

    CrossRef Google Scholar

    [37] Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán LM. Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv Funct Mater 15, 1065–1071 (2005). doi: 10.1002/adfm.200400591

    CrossRef Google Scholar

    [38] Chon JWM, Bullen C, Zijlstra P, Gu M. Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17, 875–880 (2007). doi: 10.1002/adfm.200600565

    CrossRef Google Scholar

    [39] Wang HF, Huff TB, Zweifel DA, He W, Low PS et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102, 15752–15756 (2005). doi: 10.1073/pnas.0504892102

    CrossRef Google Scholar

    [40] Zijlstra P, Chon JWM, Gu M. Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning. Opt Express 15, 12151–12160 (2007). doi: 10.1364/OE.15.012151

    CrossRef Google Scholar

    [41] Ouyang X,Xu Y, Xian MC, Feng ZW, Zhu LW et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature Photonics (2021). doi: 10.1038/s41566-021-00880-1

    CrossRef Google Scholar

  • Supplementary information for Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(5809) PDF downloads(669) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint