Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V A, Ostendorf A. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron Adv 3, 200048 (2020). doi: 10.29026/oea.2020.200048
Citation: Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V A, Ostendorf A. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron Adv 3, 200048 (2020). doi: 10.29026/oea.2020.200048

Original Article Open Access

Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency

More Information
  • During the last decades the whispering gallery mode based sensors have become a prominent solution for label-free sensing of various physical and chemical parameters. At the same time, the widespread utilization of the approach is hindered by the restricted applicability of the known configurations for ambient variations quantification outside the laboratory conditions and their low affordability, where necessity on the spectrally-resolved data collection is among the main limiting factors. In this paper we demonstrate the first realization of an affordable whispering gallery mode sensor powered by deep learning and multi-resonator imaging at a fixed frequency. It has been shown that the approach enables refractive index unit (RIU) prediction with an absolute error at 3×10-6 level for dynamic range of the RIU variations from 0 to 2×10-3 with temporal resolution of several milliseconds and instrument-driven detection limit of 3×10-5. High sensing accuracy together with instrumental affordability and production simplicity places the reported detector among the most cost-effective realizations of the whispering gallery mode approach. The proposed solution is expected to have a great impact on the shift of the whole sensing paradigm away from the model-based and to the flexible self-learning solutions.

  • 加载中
  • [1] Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5, 591-596 (2008). doi: 10.1038/nmeth.1221

    CrossRef Google Scholar

    [2] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors. Adv Opt Photonics 7, 168-240 (2015). doi: 10.1364/AOP.7.000168

    CrossRef Google Scholar

    [3] Zhang Y N, Zhou T M, Han B, Zhang A Z, Zhao Y. Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale 10, 13832-13856 (2018). doi: 10.1039/C8NR03709D

    CrossRef Google Scholar

    [4] Jiang X F, Qavi A J, Huang S H, Yang L. Whispering-gallery sensors. Matter 3, 371-392 (2020). doi: 10.1016/j.matt.2020.07.008

    CrossRef Google Scholar

    [5] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 137, 393-397 (1989). doi: 10.1016/0375-9601(89)90912-2

    CrossRef Google Scholar

    [6] Vahala K J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939

    CrossRef Google Scholar

    [7] Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, et al. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80, 4057 (2002). doi: 10.1063/1.1482797

    CrossRef Google Scholar

    [8] Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultra-high-q toroid microcavity on a chip. Nature 421, 925-928 (2003). doi: 10.1038/nature01371

    CrossRef Google Scholar

    [9] Kippenberg T J, Spillane S M, Armani D K, Vahala K J. Fabrication and coupling to planar high-Q silica disk microcavities. Appl Phys Lett 83, 797-799 (2003). doi: 10.1063/1.1593833

    CrossRef Google Scholar

    [10] White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors. Opt Lett 31, 1319-1321 (2006). doi: 10.1364/OL.31.001319

    CrossRef Google Scholar

    [11] Vollmer F, Yang L. Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1, 267-291 (2012). doi: 10.1515/nanoph-2012-0021

    CrossRef Google Scholar

    [12] Zhi Y Y, Yu X C, Gong Q H, Yang L, Xiao Y F. Single nanoparticle detection using optical microcavities. Adv Mate 29, 1604920 (2017). doi: 10.1002/adma.201604920

    CrossRef Google Scholar

    [13] Dantham V R, Holler S, Barbre C, Keng D, Kolchenko V, et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 13, 3347-3351 (2013). doi: 10.1021/nl401633y

    CrossRef Google Scholar

    [14] Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat Photonics 10, 733-739 (2016). doi: 10.1038/nphoton.2016.177

    CrossRef Google Scholar

    [15] He L N, Özdemir Ş K, Zhu J G, Kim W, Yang L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol 6, 428-432 (2011). doi: 10.1038/nnano.2011.99

    CrossRef Google Scholar

    [16] Bog U, Laue T, Grossmann T, Beck T, Wienhold T, et al. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink. Lab Chip 13, 2701-2707 (2013). doi: 10.1039/c3lc50149c

    CrossRef Google Scholar

    [17] Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192-196 (2017). doi: 10.1038/nature23281

    CrossRef Google Scholar

    [18] Zhou X, Zhang L, Pang W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Opt Express 24, 18197-18208 (2016). doi: 10.1364/OE.24.018197

    CrossRef Google Scholar

    [19] Reynolds T, Riesen N, Meldrum A, Fan X D, Hall J M M et al. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev 11, 1600265 (2017). doi: 10.1002/lpor.201600265

    CrossRef Google Scholar

    [20] Swaim J D, Knittel J, Bowen W P. Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl Phys Lett 102, 183106 (2013). doi: 10.1063/1.4804243

    CrossRef Google Scholar

    [21] Rosenblum S, Lovsky Y, Arazi L, Vollmer F, Dayan B. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nat Commun 6, 6788 (2015). doi: 10.1038/ncomms7788

    CrossRef Google Scholar

    [22] Righini G C, Soria S. Biosensing by wgm microspherical resonators. Sensors 16, 905 (2016). doi: 10.3390/s16060905

    CrossRef Google Scholar

    [23] Su J. Label-free biological and chemical sensing using whispering gallery mode optical resonators: past, present, and future. Sensors 17, 540 (2017). doi: 10.3390/s17030540

    CrossRef Google Scholar

    [24] Cai L, Pan J Y, Zhao Y, Wang J, Xiao S. Whispering gallery mode optical microresonators: structures and sensing applications. Phys Status Solidi A 217, 1900825 (2020). doi: 10.1002/pssa.201900825

    CrossRef Google Scholar

    [25] Schweiger G, Nett R, Weigel T. Microresonator array for high-resolution spectroscopy. Opt Lett 32, 2644-2646 (2007). doi: 10.1364/OL.32.002644

    CrossRef Google Scholar

    [26] Saetchnikov V A, Tcherniavskaia E A. Using optical resonance of whispering gallery modes in microspheres for real-time detection and identification of biological compounds. J Appl Spectrosc 77, 714-721 (2010). doi: 10.1007/s10812-010-9392-7

    CrossRef Google Scholar

    [27] Huckabay H A, Wildgen S M, Dunn R C. Label-free detection of ovarian cancer biomarkers using whispering gallery mode imaging. Biosens Bioelectron 45, 223-229 (2013). doi: 10.1016/j.bios.2013.01.072

    CrossRef Google Scholar

    [28] Petermann A B, Varkentin A, Roth B, Morgner U, Meinhardt-Wollweber M. All-polymer whispering gallery mode sensor system. Opt Express 24, 6052-6062 (2016). doi: 10.1364/OE.24.006052

    CrossRef Google Scholar

    [29] Saetchnikov A V, Tcherniavskaia E A, Skakun V V, Saetchnikov V A, Ostendorf A. Reusable dispersed resonators-based biochemical sensor for parallel probing. IEEE Sens J 19, 7644-7651 (2019). doi: 10.1109/JSEN.2019.2916861

    CrossRef Google Scholar

    [30] Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V, Ostendorf A. Design and application of distributed microresonator-based systems for biochemical sensing. In Proceedings Volume 11354, Optical Sensing and Detection VI 1135427 (SPIE, 2020); https://doi.org/10.1117/12.2555391.

    Google Scholar

    [31] Tcherniavskaia E A, Saetchnikov V A. Application of neural networks for classification of biological compounds from the characteristics of whispering-gallery-mode optical resonance. J Appl Spectrosc 78, 457-460 (2011). doi: 10.1007/s10812-011-9486-x

    CrossRef Google Scholar

    [32] Hu D, Zou C L, Ren H L, Lu J, Le Z C, et al. Multi-parameter sensing in a multimode self-interference micro-ring resonator by machine learning. Sensors 20, 709 (2020). doi: 10.3390/s20030709

    CrossRef Google Scholar

    [33] Kornienko V V, Nechepurenko I A, Tananaev P N, Chubchev E D, Baburin A S, et al. Machine learning for optical gas sensing: a leaky-mode humidity sensor as example. IEEE Sens J 20, 6954-6963 (2020). doi: 10.1109/JSEN.2020.2978931

    CrossRef Google Scholar

    [34] Ballard Z S, Shir D, Bhardwaj A, Bazargan S, Sathianathan S, et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS nano 11, 2266-2274 (2017). doi: 10.1021/acsnano.7b00105

    CrossRef Google Scholar

    [35] Saetchnikov A, Tcherniavskaia E, Saetchnikov V, Ostendorf A. Mapping of the detecting units of the resonator-based multiplexed sensor. In Proceedings Volume 10678, Optical Micro- and Nanometrology VⅡ 106780W (SPIE, 2018); http://doi.org/10.1117/12.2309660.

    Google Scholar

    [36] Harris D C. Quantitative Chemical Analysis 6th ed (W. H. Freeman, New York, 2003).

    Google Scholar

    [37] Loock H P, Wentzell P D. Detection limits of chemical sensors: applications and misapplications. Sens Actuators B Chem 173, 157-163 (2012). doi: 10.1016/j.snb.2012.06.071

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3242) PDF downloads(1253) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint