Ohtsu M. History, current developments, and future directions of near‐field optical science. Opto‐Electron Adv 3, 190046 (2020). doi: 10.29026/oea.2020.190046
Citation: Ohtsu M. History, current developments, and future directions of near‐field optical science. Opto‐Electron Adv 3, 190046 (2020). doi: 10.29026/oea.2020.190046

OE Historical Open Access

History, current developments, and future directions of near-field optical science

More Information
  • This paper reviews the science of the optical near-field (ONF), which is created and localized in a nanometer-sized material (NM) or on its surface. It is pointed out that work on near-field optics was started in order to break through the diffraction limit in optical microscopy and had already come to an end without giving answers to the essential questions on the origin of the near-field optical interaction. However, recent studies have reincarnated these studies and identified the ONF as an off-shell quantum field. Based on this identification, a novel science called off-shell science has started on the basis that the dispersion relation between energy and momentum is invalid for the ONF. This quantum field is called the dressed photon because it is created as a result of the interaction between photons and electrons (or excitons) in a NM and, thus, it accompanies the energies of electrons or excitons. In reviewing current developments, this paper presents fifteen novel phenomena that are contrary to the common views in conventional optical science. Novel technologies developed by applying these phenomena are also reviewed. These include: nanometer-sized optical devices, nano-fabrication technology, and energy conversion technology. High-power Si light emitting diodes, Si lasers, and SiC polarization rotators are reviewed as examples of electrical to optical energy conversion. For future directions, this paper also reviews novel theoretical studies that have commenced recently by relying on physical and mathematical bases.
  • 加载中
  • [1] Ohtsu M.Near-Field Nano/Atom Optics and Technology(Springer, Berlin, 1998).

    Google Scholar

    [2] Zhu X, Ohtsu M.Near-Field Optics: Principles and Applications(World Scientific, Singapore, 2000).

    Google Scholar

    [3] Ohtsu M.From classical to modern near-field optics and the future.Opt Rev 21, 905-910(2014). doi: 10.1007/s10043-014-0143-5

    CrossRef Google Scholar

    [4] Synge E H.A suggested method for extending microscopic resolution into the ultra-microscopic region.Lond Edinb Dublin Phil Mag J Sci 6, 356-362(1928). doi: 10.1080/14786440808564615

    CrossRef Google Scholar

    [5] O'Keefe J A.Resolving power of visible light.J Opt Soc Am 46, 359(1956). doi: 10.1364/JOSA.46.000359

    CrossRef Google Scholar

    [6] Bethe H A.Theory of diffraction by small holes.Phys Rev 66, 163-182(1944). doi: 10.1103/PhysRev.66.163

    CrossRef Google Scholar

    [7] Bouwkamp C J.On the diffraction of electromagnetic waves by small circular disks and holes.Philips Res Rep 5, 401-422(1950).

    Google Scholar

    [8] Ash E A, Nicholls G.Super-resolution aperture scanning microscope.Nature 237, 510-512(1972).

    Google Scholar

    [9] Pohl D W, Courjon D.Near Field Optics (Kluwer, Dordrecht, 1993).

    Google Scholar

    [10] Pohl D W, Denk W, Lanz M.Optical stethoscopy:image recording with resolution λ/20.Appl Phys Lett 44, 651-653(1984). doi: 10.1063/1.94865

    CrossRef Google Scholar

    [11] Lewis A, Isaacson M, Harootunian A, Muray A.Development of a 500Å spatial resolution light microscope:I.Light is efficiently transmitted through λ/16 diameter apertures.Ultramicroscopy 13, 227-231(1984). doi: 10.1016/0304-3991(84)90201-8

    CrossRef Google Scholar

    [12] Fischer U C.Optical characteristics of 0.1μm circular apertures in a metal film as light sources for scanning ultramicroscopy.J Vac Sci Technol B 3, 386-390(1985). doi: 10.1116/1.583269

    CrossRef Google Scholar

    [13] Betzig E, Isaacson M, Lewis A.Collection mode near-field scanning optical microscopy.Appl Phys Lett 51, 2088-2090(1987). doi: 10.1063/1.98956

    CrossRef Google Scholar

    [14] Mononobe S, Saiki T.Chs 3 and 4 in Near-Field Nano/Atom Optics and Technol .(ed Ohtsu M.Springer Tokyo, 1998).

    Google Scholar

    [15] Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L.Breaking the diffraction barrier:optical microscopy on a nanometric scale.Science 251, 1468-1470(1991). doi: 10.1126/science.251.5000.1468

    CrossRef Google Scholar

    [16] Pangaribuan T, Yamada K, Jian S D, Ohsawa H, Ohtsu M.Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope.Jpn J Appl Phys 31, L1302-L1304(1992). doi: 10.1143/JJAP.31.L1302

    CrossRef Google Scholar

    [17] Malmqvist L, Hertz H M.Trapped particle optical microscopy.Opt Commun 94, 19-24(1992). doi: 10.1016/0030-4018(92)90398-B

    CrossRef Google Scholar

    [18] van Hulst N F, Moers M H P, Noordman O F J, Tack R G, Segerink F B et al.Near-field optical microscope using a silicon-nitride probe.Appl Phys Lett 62, 461-463(1993). doi: 10.1063/1.108933

    CrossRef Google Scholar

    [19] Zenhausern F, Martin Y, Wickramasinghe H K.Scanning interferometric apertureless microscopy:optical imaging at 10 angstrom resolution.Science 269, 1083-1085(1995). doi: 10.1126/science.269.5227.1083

    CrossRef Google Scholar

    [20] Guerra J M.Photon tunneling microscopy.Appl Opt 29, 3741-3752(1990). doi: 10.1364/AO.29.003741

    CrossRef Google Scholar

    [21] Betzig E, Chichester R J.Single molecules observed by near-field scanning optical microscopy.Science 262, 1422-1425(1993). doi: 10.1126/science.262.5138.1422

    CrossRef Google Scholar

    [22] Xie X S, Dunn R C.Probing single molecule dynamics.Science 265, 361-364(1994). doi: 10.1126/science.265.5170.361

    CrossRef Google Scholar

    [23] Maheswari R U, Mononobe S, Tatsumi H, Katayama Y, Ohtsu M.Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control.Opt Rev 3, 463-467(1996). doi: 10.1007/BF02932048

    CrossRef Google Scholar

    [24] Levy J, Nikitin V, Kikkawa J M, Awschalom D D, Samarth N.Femtosecond near-field spin microscopy in digital magnetic heterostructures.J Appl Phys 79, 6095-6100(1996). doi: 10.1063/1.362101

    CrossRef Google Scholar

    [25] Saiki T, Nishi K, Ohtsu M.Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots.J Appl Phys 37, 1638-1642(1998). doi: 10.1143/JJAP.37.1638

    CrossRef Google Scholar

    [26] Narita Y, Murotani H.Submicrometer optical characterization of the grain boundary of optically active Cr3+ doped polycrystalline Al2O3 by near-field spectroscopy.Am Mineral 87, 1144-1147(2002). doi: 10.2138/am-2002-8-912

    CrossRef Google Scholar

    [27] Isaacson M, Cline J, Barshatzky H.Resolution in near-field optical microscopy.Ultramicroscopy 47, 15-22(1992). doi: 10.1016/0304-3991(92)90182-J

    CrossRef Google Scholar

    [28] Wolf E, Nieto-Vesperinas M.Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences.J Opt Soc Am 2, 886-890(1985). doi: 10.1364/JOSAA.2.000886

    CrossRef Google Scholar

    [29] Girard C, Courjon D.Model for scanning tunneling optical microscopy:a microscopic self-consistent approach.Phys Rev B 42, 9340-9439(1990). doi: 10.1103/PhysRevB.42.9340

    CrossRef Google Scholar

    [30] Eah S K, Jhe W, Saiki T, Ohtsu M.Study of quantum optical effects with scanning near-field optical microscopy In Proceedings of the First Asia-Pacific Workshop on Near Field Optics(1996).

    Google Scholar

    [31] Kobayashi K, Ohtsu M.Quantum theoretical approach to a near-field optical system.J Microsc 194, 249-254(1999). doi: 10.1046/j.1365-2818.1999.00545.x

    CrossRef Google Scholar

    [32] Kobayashi K, Sangu S, Ito H, Ohtsu M.Near-field optical potential for a neutral atom.Phys Rev A 63, 013806(2001). doi: 10.1103/PhysRevA.63.013806

    CrossRef Google Scholar

    [33] Ito H, Nakata T, Sakaki K, Ohtsu M, Lee K I et al.Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers.Phys Rev Lett 76, 4500-4503(1996). doi: 10.1103/PhysRevLett.76.4500

    CrossRef Google Scholar

    [34] Ohtsu M, Kobayashi K, Kawazoe T, Sangu S, Yatsui T.Nanophotonics:design, fabrication, and operation of nanometric devices using optical near fields.IEEE J Sel Top Quantum Electron 8, 839-862(2002). doi: 10.1109/JSTQE.2002.801738

    CrossRef Google Scholar

    [35] Ohtsu M.Handbook of Nano-Optics and Nanophotonics (Springer, Heidelberg, New York, 2013).

    Google Scholar

    [36] Ohtsu M, Yatsui T.Progress in Nanophotonics 4(Springer, Heidelberg, 2017).

    Google Scholar

    [37] Tanaka Y, Kobayashi K.Spatial localization of an optical near field in one-dimensional nanomaterial system.Physica E 40, 297-300(2007). doi: 10.1016/j.physe.2007.06.045

    CrossRef Google Scholar

    [38] Sangu S, Kobayashi K, Ohtsu M.Optical near fields as photon-matter interacting systems.J Microsc 202, 279-285(2001). doi: 10.1046/j.1365-2818.2001.00805.x

    CrossRef Google Scholar

    [39] Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G et al.Plasmonics—A route to nanoscale optical devices.Adv Mater 13, 1501-1505(2001). doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

    CrossRef Google Scholar

    [40] Sangu S, Kobayashi K, Shojiguchi S, Ohtsu M.Logic and functional operations using a near-field optically coupled quantum-dot system.Phys Rev B 69, 115334(2004). doi: 10.1103/PhysRevB.69.115334

    CrossRef Google Scholar

    [41] Kawazoe T, Ohtsu M, Aso S, Sawado Y, Hosoda Y et al.Two-dimensional array of room-temperature nanophotonic logic gates using InAs quantum dots in mesa structures.Appl Phys B 103, 537-546(2011). doi: 10.1007/s00340-011-4375-9

    CrossRef Google Scholar

    [42] Kawazoe T, Tanaka S, Ohtsu M.Single-photon emitter using excitation energy transfer between quantum dots.J Nanophoton 2, 029502(2008). doi: 10.1117/1.3026554

    CrossRef Google Scholar

    [43] Naruse M, Holmström P, Kawazoe T, Akahane K, Yamamoto N et al.Energy dissipation in energy transfer mediated by optical near-field interactions and their interfaces with optical far-fields.Appl Phys Lett 100, 241102(2012). doi: 10.1063/1.4729003

    CrossRef Google Scholar

    [44] Naruse M, Leibnitz K, Peper F, Tate N, Nomura W et al.Autonomy in excitation transfer via optical near-field interactions and its implications for information networking.Nano Commun Netw 2, 189-195(2011). doi: 10.1016/j.nancom.2011.07.002

    CrossRef Google Scholar

    [45] Naruse M, Tate N, Aono M, Ohtsu M.Information physics fundamentals of nanophotonics.Rep Prog Phys 76, 056401(2013). doi: 10.1088/0034-4885/76/5/056401

    CrossRef Google Scholar

    [46] Kim S J, Naruse M, Aono M, Ohtsu M, Hara M.Decision maker based on nanoscale photo-excitation transfer.Sci Rep 3, 2370(2013). doi: 10.1038/srep02370

    CrossRef Google Scholar

    [47] Aono M, Naruse M, Kim S J, Wakabayashi M, Hori H et al.Amoeba-inspired nanoarchitectonic computing:solving intractable computational problems using nanoscale photoexcitation transfer dynamics.Langmuir 29, 7557-7564(2013). doi: 10.1021/la400301p

    CrossRef Google Scholar

    [48] Tate N, Sugiyama H, Naruse M, Nomura W, Yatsui T et al.Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.Opt Express 17, 11113-11121(2009). doi: 10.1364/OE.17.011113

    CrossRef Google Scholar

    [49] Tate N, Naruse M, Yatsui T, Kawazoe T, Hoga M et al.Nanophotonic code embedded in embossed hologram for hierarchical information retrieval.Opt Express 18, 7497-7505(2010). doi: 10.1364/OE.18.007497

    CrossRef Google Scholar

    [50] Kawazoe T, Kobayashi K, Takubo S, Ohtsu M.Nonadiabatic photodissociation process using an optical near field.J Chem Phys 122, 024715(2005). doi: 10.1063/1.1828034

    CrossRef Google Scholar

    [51] Kawazoe T, Kobayashi K, Ohtsu M.Near-field optical chemical vapor deposition using Zn (acac)2 with a non-adiabatic photochemical process.Appl Phys B 84, 247-251(2006).

    Google Scholar

    [52] Ohtsu M, Kawazoe T.Experimental estimation of the maximum size of a dressed photon.(2018); http://doi.org/10.14939/1802R.001.v1.

    Google Scholar

    [53] Lim J, Yatsui T, Ohtsu M.Observation of size-dependent resonance of near-field coupling between a deposited Zn dot and the probe apex during near-field optical chemical vapor deposition.IEICE Trans Electron E88-C, 1832-1835(2005).

    Google Scholar

    [54] Kobayashi K, Sangu S, Ohtsu M, Ch 5 in Progress in Nano-Electro-Optics(Springer, Heidelberg, 2003).

    Google Scholar

    [55] Polonski V V, Yamamoto Y, Kourogi M, Fukuda H, Ohtsu M.Nanometric patterning of zinc by optical near-field photochemical vapour deposition.J Microsc 194, 545-551(1999). doi: 10.1046/j.1365-2818.1999.00497.x

    CrossRef Google Scholar

    [56] Yonemitsu H, Kawazoe T, Kobayashi K, Ohtsu M.Nonadiabatic photochemical reaction and application to photolithography.J Luminesc 122-123, 230-233(2007). doi: 10.1016/j.jlumin.2006.01.115

    CrossRef Google Scholar

    [57] Inao Y, Nakasato S, Kuroda R, Ohtsu M.Near-field lithography as prototype nano-fabrication tool.Microelectron Eng 84, 705-710(2007). doi: 10.1016/j.mee.2007.01.043

    CrossRef Google Scholar

    [58] Kawazoe T, Kobayashi K, Akahane K, Naruse M, Yamamoto N et al.Demonstration of nanophotonic NOT gate using near-field optically coupled quantum dots.Appl Phys B 84, 243-246(2006). doi: 10.1007/s00340-006-2234-x

    CrossRef Google Scholar

    [59] Kawazoe T, Takahashi T, Ohtsu M.Evaluation of the dynamic range and spatial resolution of nonadiabatic optical near-field lithography through fabrication of Fresnel zone plates.Appl Phys B 98, 5-11(2010). doi: 10.1007/s00340-009-3680-z

    CrossRef Google Scholar

    [60] Koike M, Miyauchi S, Sano K, Imazono T.Ch.9 in Nanophotonics and Nanofabrication.(ed Ohtsu M.Wiley-VCH, 2009).

    Google Scholar

    [61] Hirata K.Realization of high-performance optical element by optical near-field etching.Proc SPIE 7921, 79210M (2011).

    Google Scholar

    [62] Yatsui T, Nomura W, Ohtsu M.Realization of ultraflat plastic film using dressed-photon-phonon-assisted selective etching of nanoscale structures. Adv Opt Technol 2015, 701802(2015).

    Google Scholar

    [63] Allan D W.Statistics of atomic frequency standards.Proc IEEE 54, 221-230(1966). doi: 10.1109/PROC.1966.4634

    CrossRef Google Scholar

    [64] Yatsui T, Hirata K, Tabata T, Miyake Y, Akita Y et al.Self-organized near-field etching of the sidewalls of glass corrugations.Appl Phys B 103, 527-530(2011). doi: 10.1007/s00340-011-4569-1

    CrossRef Google Scholar

    [65] Teki R, John Kadaksham A, House M, Harris-Jones J, Ma A et al.Alternative smoothing techniques to mitigate EUV substrate defectivity.Proc SPIE 8322 83220B (2012).

    Google Scholar

    [66] Yatsui T, Nomura W, Stehlin F, Soppera O, Naruse M et al.Challenges in realizing ultraflat materials surfaces.Beilstein J Nanotechnol 4, 875-885(2013). doi: 10.3762/bjnano.4.99

    CrossRef Google Scholar

    [67] Nomura W, Yatsui T, Yanase Y, Suzuki K, Fujita M et al.Repairing nanoscale scratched grooves on polycrystalline ceramics using optical near-field assisted sputtering.Appl Phys B 99, 75-78(2010). doi: 10.1007/s00340-009-3797-0

    CrossRef Google Scholar

    [68] Yatsui T, Nomura W, Naruse M, Ohtsu M.Realization of an atomically flat surface of diamond using dressed photon-phonon etching.J Phys D 45, 475302(2012). doi: 10.1088/0022-3727/45/47/475302

    CrossRef Google Scholar

    [69] Kawazoe T, Fujiwara H, Kobayashi K, Ohtsu M.Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field.IEEE J Sel Top Quant Electron 15, 1380-1386(2009). doi: 10.1109/JSTQE.2009.2014781

    CrossRef Google Scholar

    [70] Fujiwara H, Kawazoe T, Ohtsu M.Nonadiabatic multi-step excitation for the blue-green light emission from dye grains induced by the near-infrared optical near-field.Appl Phys B 98, 283-289(2010). doi: 10.1007/s00340-009-3762-y

    CrossRef Google Scholar

    [71] Fujiwara H, Kawazoe T, Ohtsu M.Nonadiabatic nondegenerate excitation by optical near-field and its application to optical pulse-shape measurement.Appl Phys B 100, 85-91(2010). doi: 10.1007/s00340-010-3976-z

    CrossRef Google Scholar

    [72] Tate N, Naruse M, Liu Y, Kawazoe T, Yatsui T et al.Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets.Appl Phys B 112, 587-592(2013). doi: 10.1007/s00340-013-5442-1

    CrossRef Google Scholar

    [73] Yatsui T.Progress in Nanophotonics 5(Springer, 2018).

    Google Scholar

    [74] Yukutake S, Kawazoe T, Yatsui T, Nomura W, Kitamura K et al.Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process.Appl Phys B 99, 415-422(2010). doi: 10.1007/s00340-010-3999-5

    CrossRef Google Scholar

    [75] Tanaka H, Kawazoe T, Ohtsu M.Increasing Si photodetector photosensitivity in near-infrared region and manifestation of optical amplification by dressed photons.Appl Phys B 108, 51-56(2012). doi: 10.1007/s00340-012-5077-7

    CrossRef Google Scholar

    [76] Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M.Silicon-based visible light-emitting devices integrated into microelectronic circuits.Nature 384, 338-341(1996); http://doi.org/10.1038/384338a0. doi: 10.1038/384338a0

    CrossRef Google Scholar

    [77] Lu Z H, Lockwood D J, Baribeau J M.Quantum confinement and light emission in SiO2/Si superlattices.Nature 378, 258-260(1995);http://doi.org/10.1038/378258a0. doi: 10.1038/378258a0

    CrossRef Google Scholar

    [78] Milosevic M M, Chen X, Cao W, Runge A F J, Franz Y et al.Ion implantation in silicon for trimming the operating wavelength of ring resonators.IEEE J Sel Top Quant Electron 24, 8200107(2018);http://doi.org/10.1109/JSTQE.2018.2799660. doi: 10.1109/JSTQE.2018.2799660

    CrossRef Google Scholar

    [79] Kawazoe T, Mueed M A, Ohtsu M.Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process.Appl Phys B 104, 747-754(2011). doi: 10.1007/s00340-011-4596-y

    CrossRef Google Scholar

    [80] Kim J H, Kawazoe T, Ohtsu M.Optimization of dressed-photon—phonon-assisted annealing for fabricating GaP light-emitting diodes.Appl Phys A 121, 1395-1401(2015). doi: 10.1007/s00339-015-9465-9

    CrossRef Google Scholar

    [81] Yamaguchi M, Kawazoe T, Ohtsu M.Evaluating the coupling strength of electron-hole pairs and phonons in a 0.9μm-wavelength silicon light emitting diode using dressed-photon-phonons.Appl Phys A 115, 119-125(2014). doi: 10.1007/s00339-013-7904-z

    CrossRef Google Scholar

    [82] Wada N, Tran M A, Kawazoe T, Ohtsu M.Measurement of multimode coherent phonons in nanometric spaces in a homojunction-structured silicon light emitting diode.Appl Phys A 115, 113-118(2014). doi: 10.1007/s00339-013-7906-x

    CrossRef Google Scholar

    [83] Ohtsu M, Kawazoe T.Principles and practices of Si light emitting diodes using dressed photons.Adv Mater Lett 10, 860-867(2019). doi: 10.5185/amlett.2019.2264

    CrossRef Google Scholar

    [84] Tanaka Y, Kobayashi K.Optical near field dressed by localized and coherent phonons.J Microsc 229, 228-232(2008). doi: 10.1111/j.1365-2818.2008.01891.x

    CrossRef Google Scholar

    [85] Kawazoe T, Nishioka K, Ohtsu M.Polarization control of an infrared silicon light-emitting diode by dressed photons and analyses of the spatial distribution of doped boron atoms.Appl Phys A 121, 1409-1415(2015). doi: 10.1007/s00339-015-9288-8

    CrossRef Google Scholar

    [86] Tran M A, Kawazoe T, Ohtsu M.Fabrication of a bulk silicon p-n homojunction-structured light-emitting diode showing visible electroluminescence at room temperature.Appl Phys A 115, 105-111(2014).

    Google Scholar

    [87] Yamaguchi M, Kawazoe T, Yatsui T, Ohtsu M.Spectral properties of a lateral p-n homojunction-structured visible silicon light-emitting diode fabricated by dressed-photon—phonon-assisted annealing.Appl Phys A 121, 1389-1394(2015). doi: 10.1007/s00339-015-9432-5

    CrossRef Google Scholar

    [88] Ohtsu M.Silicon Light-Emitting Diodes and Lasers(Springer, Heidelberg, 2016).

    Google Scholar

    [89] Kawazoe T, Ohtsu M, Akahane K, Yamamoto N.Si homojunction structured near-infrared laser based on a phonon-assisted process.Appl Phys B 107, 659-663(2012). doi: 10.1007/s00340-012-5053-2

    CrossRef Google Scholar

    [90] Kawazoe T.High power Silicon laser based on the dressed photon technology.In Proceedings of 2017 International Conference on Solid State Devices and Materials 413-414(2017).

    Google Scholar

    [91] Ohtsu M, Ojima I, Sakuma H.Ch 1, Vol 62 in Progress in Optics(ed Visser T.Elsevier, 2019)

    Google Scholar

    [92] Ohtsu M.Ch 6 and Ch 8 in Silicon Light-Emitting Diodes and Lasers(Springer, Heidelberg, 2016).

    Google Scholar

    [93] Tate N, Kawazoe T, Nomura W, Ohtsu M.Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions.Sci Rep 5, 12762(2015). doi: 10.1038/srep12762

    CrossRef Google Scholar

    [94] Newton T D, Wigner E P.Localized states for elementary systems.Rev Mod Phys 21, 400-406(1949). doi: 10.1103/RevModPhys.21.400

    CrossRef Google Scholar

    [95] Ojima I.Micro-macro duality in quantum physics.Ch 12 in Stochastic Analysis: Classical and Quantum-Perspectives of White Noise Theory(ed T Hida.World Scientific, 2005).

    Google Scholar

    [96] Ojima I.Nakanishi-Lautrup, B-field, crossed product and duality.In Research on Quantum Field Theory, RIMS Workshop(2006).

    Google Scholar

    [97] Dell'Antonio G F.Support of a field in p space.J Math Phys 2, 759-766(1961). doi: 10.1063/1.1724219

    CrossRef Google Scholar

    [98] Aharonov Y, Komar A, Susskind L.Superluminal behavior, causality, and instability.Phys Rev 182, 1400-1403(1969). doi: 10.1103/PhysRev.182.1400

    CrossRef Google Scholar

    [99] Yatsui T.Vol 5 in Progress in Nanophotonics(Springer, 2018). [100.Ohtsu M, Ojima I, Sakuma H.Ch 2, Vol 64 in Progress in Optics(ed Visser T D.Elsevier, 2019).

    Google Scholar

    [100] Ohtsu M, Ojima I, Sakuma H. Ch 2, Vol 64 in Progress in Optics (ed Visser T D. Elsevier, 2019).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(5076) PDF downloads(2236) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint