Citation: | Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040 |
[1] | Gibson D, MacGregor C. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment. Sensors 13, 7079-7103 (2013). doi: 10.3390/s130607079 |
[2] | Caron A, Redon N, Thevenet F, Hanoune B, Coddeville P. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build Environ 107, 19-28 (2016). doi: 10.1016/j.buildenv.2016.07.006 |
[3] | Narayanan S, Rice G, Agah M. A micro-discharge photoionization detector for micro-gas chromatography. Microchim Acta 181, 493-499 (2014). doi: 10.1007/s00604-013-1146-9 |
[4] | Barreca D, Bekermann D, Comini E, Devi A, Fischer R A et al. 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sens Actuators B: Chem 149, 1-7 (2010). doi: 10.1016/j.snb.2010.06.048 |
[5] | Güntner A T, Pineau N J, Chie D, Krumeich F, Pratsinis S E. Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4, 5358-5366 (2016). doi: 10.1039/C6TB01335J |
[6] | Priyanka K P, Vattappalam S C, Sankararaman S, Balakrishna K M, Varghese T. High-performance ethanol gas sensor using TiO2 nanostructures. Eur Phys J Plus 132, 306 (2017). doi: 10.1140/epjp/i2017-11581-x |
[7] | Liu X, Cheng S T, Liu H, Hu S, Zhang D Q et al. A survey on gas sensing technology. Sensors 12, 9635-9665 (2012). doi: 10.3390/s120709635 |
[8] | Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K. Effect of water vapor on Pd-Loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7, 5863-5869 (2015). doi: 10.1021/am509082w |
[9] | Piriya V S A, Joseph P, Daniel S C G K, Lakshmanan S, Kinoshita T et al. Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng: C 78, 1231-1245 (2017). doi: 10.1016/j.msec.2017.05.018 |
[10] | Wang S Y, Ma J Y, Li Z J, Su H Q, Alkurd N R et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J Hazard Mater 285, 368-374 (2015). doi: 10.1016/j.jhazmat.2014.12.014 |
[11] | Lochbaum A, Fedoryshyn Y, Dorodnyy A, Koch U, Hafner C et al. On-chip narrowband thermal emitter for Mid-IR optical gas sensing. ACS Photonics 4, 1371-1380 (2017). doi: 10.1021/acsphotonics.6b01025 |
[12] | Zheng Y, Wu Z F, Shum P P, Xu Z L, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv 1, 180015 (2018). |
[13] | Deng C S, Li M J, Peng J, Liu W L, Zhong J X. Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing. J Opt Soc Am B 34, 1624-1631 (2017). doi: 10.1364/JOSAB.34.001624 |
[14] | Moumen S, Raible I, Krauß A, Wöllenstein J. Infrared investigation of CO2 sorption by amine based materials for the development of a NDIR CO2 sensor. Sens Actuators B: Chem 236, 1083-1090 (2016). doi: 10.1016/j.snb.2016.06.014 |
[15] | Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review. Rev Chem Eng 23, 65 (2007). |
[16] | Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019). |
[17] | Bingham J M, Anker J N, Kreno L E, Van Duyne R P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132, 17358-17359 (2010). doi: 10.1021/ja1074272 |
[18] | Jágerská J, Le Thomas N, Zhang H, Diao Z, Houdre R. Refractive index gas sensing in a hollow photonic crystal cavity. In Proceedings of 2010 12th International Conference on Transparent Optical Networks 1-4 (IEEE, 2010); http://doi.org/10.1109/ICTON.2010.5549037. |
[19] | Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sens Actuators 3, 79-88 (1982-1983). |
[20] | Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10, 631-636 (2011). doi: 10.1038/nmat3029 |
[21] | Allsop T, Arif R, Neal R, Kalli K, Kundrát V et al. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light: Sci Appl 5, e16036 (2016). doi: 10.1038/lsa.2016.36 |
[22] | Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuators B: Chem 238, 264-273 (2017). doi: 10.1016/j.snb.2016.07.051 |
[23] | Hasan D, Lee C. Hybrid metamaterial absorber platform for sensing of CO2 gas at Mid‐IR. Adv Sci 5, 1700581 (2018). doi: 10.1002/advs.201700581 |
[24] | Werle P, Popov A. Application of antimonide lasers for gas sensing in the 3-4-µm range. Appl Opt 38, 1494-1501 (1999). |
[25] | Charlton C, De Melas F, Inberg A, Croitoru N, Mizaikoff B. Hollow-waveguide gas sensing with room-temperature quantum cascade lasers. IEE Proc-Optoelectron 150, 306-309 (2003). doi: 10.1049/ip-opt:20030673 |
[26] | Zhang Y, Gao W Z, Song Z Y, An Y P, Li L et al. Design of a novel gas sensor structure based on mid-infrared absorption spectrum. Sens Actuators B: Chem 147, 5-9 (2010). doi: 10.1016/j.snb.2009.11.044 |
[27] | Liang L, Hu X, Wen L, Zhu Y H, Yang X G et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photonics Rev 12, 1800078 (2018). doi: 10.1002/lpor.201800078 |
[28] | Wen L, Liang L, Yang X G, Liu Z, Li B J et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano 13, 6963-6972 (2019). doi: 10.1021/acsnano.9b01914 |
[29] | Hu X, Xu G Q, Wen L, Wang H C, Zhao Y C et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev 10, 962-969 (2016). doi: 10.1002/lpor.201600064 |
[30] | Yesilkoy F, Arvelo E R, Jahani Y, Liu M K, Tittl A et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 13, 390-396 (2019). doi: 10.1038/s41566-019-0394-6 |
[31] | Matuschek M, Singh D P, Jeong H H, Nesterov M, Weiss T et al. Chiral plasmonic hydrogen sensors. Small 14, 1702990 (2018). doi: 10.1002/smll.201702990 |
[32] | Tan Z X, Hao H, Shao Y H, Chen Y Z, Li X J et al. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt Express 22, 15049-15063 (2014). doi: 10.1364/OE.22.015049 |
[33] | Chong X Y, Kim K J, Zhang Y J, Li E W, Ohodnicki P R et al. Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing. Nanotechnology 28, 26LT01 (2017). |
[34] | Pusch A, De Luca A, Oh S S, Wuestner S, Roschuk T et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci Rep 5, 17451 (2015). doi: 10.1038/srep17451 |
[35] | Tan X C, Li J Y, Yang A, Liu H, Yi F. Narrowband plasmonic metamaterial absorber integrated pyroelectric detectors towards infrared gas sensing. Proc SPIE 10536, 105361H (2018.) |
[36] | Genner A, Gasser C, Moser H, Ofner J, Schreiber J et al. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology. Anal Bioanal Chem 409, 753-761 (2017). doi: 10.1007/s00216-016-0040-9 |
[37] | Rück T, Bierl R, Matysik F M. Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level. Sens Actuators A: Phys 263, 501-509 (2017). doi: 10.1016/j.sna.2017.06.036 |
[38] | Yin X K, Dong L, Wu H P, Zhang L, Ma W G et al. Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring. Opt Express 27, A224-A234 (2019). doi: 10.1364/OE.27.00A224 |
[39] | Wen L, Chen Q, Hu X, Wang H C, Jin L, Su Q. Multifunctional silicon optoelectronics integrated with plasmonic scattering color. ACS Nano 10, 11076-11086 (2016). doi: 10.1021/acsnano.6b05960 |
[40] | Delli E, Letka V, Hodgson P D, Repiso E, Hayton J P et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photonics 6, 538-544 (2019). doi: 10.1021/acsphotonics.8b01550 |
[41] | Sassi U, Parret R, Nanot S, Bruna M, Borini S et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat Commun 8, 14311 (2017). doi: 10.1038/ncomms14311 |
[42] | Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10, 2342-2348 (2010). doi: 10.1021/nl9041033 |
[43] | Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642 |
[44] | Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105, 171101 (2014). doi: 10.1063/1.4895595 |
[45] | Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91, 184102 (2007). doi: 10.1063/1.2805016 |
[46] | Tamagnone M, Ambrosio A, Chaudhary K, Jauregui L A, Kim P et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci Adv 4, eaat7189 (2018). doi: 10.1126/sciadv.aat7189 |
[47] | Qu C, Ma S J, Hao J M, Qiu M, Li X et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett 115, 235503 (2015). doi: 10.1103/PhysRevLett.115.235503 |
[48] | Kocer H, Butun S, Banar B, Wang K, Tongay S et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett 106, 161104 (2015). doi: 10.1063/1.4918938 |
[49] | Lv J, Que L C, Wei L H, Zhou Y, Liao B B et al. Uncooled microbolometer infrared focal plane array without substrate temperature stabilization. IEEE Sens J 14, 1533-1544 (2014). doi: 10.1109/JSEN.2014.2298512 |
[50] | Niklaus F, Vieider C, Jakobsen H. MEMS-based uncooled infrared bolometer arrays: a review. Proc SPIE 6836, 68360D (2007). |
[51] | Palik E D. Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998). |
[52] | Cheng F, Yang X D, Gao J. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39, 3185-3188 (2014). doi: 10.1364/OL.39.003185 |
[53] | Sherif S M, Swillam M A. Metal-less silicon plasmonic mid-infrared gas sensor. J Nanophotonics 10, 026025 (2016). doi: 10.1117/1.JNP.10.026025 |
[54] | Ordonez-Miranda J, Ezzahri Y, Joulain K, Drevillon J, Alvarado-Gil J J. Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO2. Phys Rev B 98, 075144 (2018). doi: 10.1103/PhysRevB.98.075144 |
[55] | Pevec S, Donlagic D. Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10−9 RIU. Opt Express 26, 23868-23882 (2018). doi: 10.1364/OE.26.023868 |
[56] | Rogalski A. Progress in focal plane array technologies. Prog Quant Electron 36, 342-473 (2012). |
[57] | Kreno L E, Hupp J T, Van Duyne R P. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem 82, 8042-8046 (2010). doi: 10.1021/ac102127p |
[58] | Chong X Y, Zhang Y J, Li E W, Kim K J, Ohodnicki P R et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sens 3, 230-238 (2018). doi: 10.1021/acssensors.7b00891 |
[59] | Thornton A W, Simon CM, Kim J, Kwon O, Deeg K S et al. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater 29, 2844-2854 (2017). doi: 10.1021/acs.chemmater.6b04933 |
[60] | Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F et al. The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 110, 533-572 (2009). doi: 10.1016/j.jqsrt.2009.02.013 |
[61] | Zhang X L, Jiang J W. Thermal conductivity of zeolitic imidazolate framework-8: A molecular simulation study. J Phys Chem C 117, 18441-18447 (2013). doi: 10.1021/jp405156y |
[62] | Calvin J J, Rosen P F, Smith S J, Woodfield B F. Heat capacities and thermodynamic functions of the ZIF organic linkers imidazole, 2-methylimidazole, and 2-ethylimidazole. J Chem Thermodyn 132, 129-141 (2019). doi: 10.1016/j.jct.2018.12.024 |
[63] | Redding B, Alam M, Seifert M, Cao H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175-180 (2014). doi: 10.1364/OPTICA.1.000175 |
[64] | Bao J, Bawendi M G. A colloidal quantum dot spectrometer. Nature 523, 67-70 (2015). doi: 10.1038/nature14576 |
[65] | Li E W, Chong X Y, Ren F H, Wang A X. Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array. Opt Lett 41, 1913-1916 (2016). doi: 10.1364/OL.41.001913 |
[66] | Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer. ACS Photonics 6, 79-86 (2019). |
[67] | Wang Z, Yi S, Chen A, Zhou M, Luk T S et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun 10, 1020 (2019). doi: 10.1038/s41467-019-08994-5 |
[68] | Wang Z, Yu Z F. Spectral analysis based on compressive sensing in nanophotonic structures. Opt Express 22, 25608-25614 (2014). doi: 10.1364/OE.22.025608 |
Supplementary information for On-chip readout plasmonic mid-IR gas sensor |
(a) Schematic of a multilayer stack (Au/Si3N4/VO2/Si3N4) coated silicon gratings for on-chip gas sensing. (b) Sensing mechanism. The variation of gas concentration induces an increase/decrease of light absorbance of the microstructures and then causes a temperature increase/decrease, which generates an electrical signal via VO2.
(a) Simulated absorption spectra at different ngas for the device structure in Fig. 1(a). The period of gratings P = 3.3 µm, the grating depth hg = 160 nm, and the grating width wg = (w1+w2)/2 = 3 µm. (b) Q factor and FoM at various ngas. (c) The electric field distribution at the resonance peak (λ = 3.3 μm) at ngas = 1. (d) Poynting vector at the resonance. (e) The calculated absorption spectra as functions of wavelength and incident angle. (f) Sensitivities of different order modes versus the incident angle.
(a) Schematic of on-chip mid-IR gas sensor based on an SOI platform, where the silicon substrate in the area underneath the sensor is removed to reduce the thermal dissipation. The thickness of each layer in the Au/Si3N4/VO2/Si3N4/Si stack is 200 nm, 50 nm, 100 nm, 500 nm and 4 μm, respectively. The thickness of the oxide layer is 1 µm. P = 3.3 µm, hg = 220 nm, wg = 3 µm. (b) Simulated temperature distribution across the sensor with the illumination on and off when the power density of light is 3.75 W/cm2 at 3.348 μm and corresponding absorption efficiency is 58%. (c) Temperature maximum under different wavelength illumination at the same power density and the absorption spectra of the gratings. The period number of the grating is 100. (d) Absorption spectra for variation of different environmental RI. (e) Absorption at 3.345 µm illumination and the associated device temperature versus the variation of different environmental RI.
(a) Schematic of on-chip mid-IR gas sensor array based on an air bridge structure. The grating region has a size of 330 µm × 50 µm. The Au/Si3N4/VO2/Si3N4 stack is shown in the inset and the thicknesses are 200 nm/50 nm/100 nm/500 nm, respectively. The stack is supported by the Si3N4/W bridges on Si substrate. (b) Temperature and relative electrical resistance variation of the sensors versus the variation of different environment gas RI. 'PD' means the power density of the incident light. (c) Simulated temperature distribution across the sensor with and without illumination at a wavelength of 3.348 µm with a power density of 1 W/cm2 and the absorption is 58%.
(a) Absorption spectra of a similar sensor as shown in Fig. 4 with an additional MOF layer placed on the top surface in pure Ar2 and a mixture of Ar(90%)/CO2(10%). The result in a mixture of Ar(90%)/CO2(10%) ignoring the absorbance of CO2 is also shown for comparison. P = 1.99 µm, hg = 100 nm, wg = 1.25 µm. RIs of CO2 and MOF refer to literatures57, 60. For a same membrane size (330 μm×50 μm) with the one in Fig. 4, there are 165 gratings in this case. (b) Simulated temperature distribution across the sensor illuminated at a wavelength of 2.71 µm with a power density of 1 W/cm2 in a mixture of Ar(90%)/CO2(10%).
Gas molecular fingerprint spectrum reconstruction with the monolithically integrated plasmonic gas sensor array Φ(λ).