Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035
Citation: Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

Original Article Open Access

Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing

More Information
  • We report the femtosecond (fs) laser fabrication of biomimetic omnidirectional iridescent metallic surfaces exhibiting efficient diffraction for practically any angle of light incidence. Such diffractive behavior is realized by means of multi-directional low-spatial-frequency, laser-induced periodic surface structures (LSFL) formed upon exploiting the cylindrical symmetry of a cylindrical vector (CV) fs field. We particularly demonstrate that the multi-directional gratings formed on stainless steel surface by a radially polarized fs beam, could mimic the omnidirectional structural coloration properties found in some natural species. Accordingly, the fabricated grating structures can spatially disperse the incident light into individual wavelength with high efficiency, exhibiting structural iridescence at all viewing angles. Analytical calculations using the grating equation reproduced the characteristic variation of the vivid colors observed as a function of incident angle. We envisage that our results will significantly contribute to the development of new photonic and light sensing devices.
  • 加载中
  • [1] Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev 45, 6698-6724 (2016). doi: 10.1039/C6CS00129G

    CrossRef Google Scholar

    [2] Kumar C S S R. Biomimetic and Bioinspired Nanomaterials (Wiley, Weinheim, 2010).

    Google Scholar

    [3] lida M, Hagiwara K, Asakura H. Holographic fourier diffraction gratings with a high diffraction efficiency optimized for optical communication systems. Appl Opt 31, 3015-3019 (1992). doi: 10.1364/AO.31.003015

    CrossRef Google Scholar

    [4] Loewen E G, Popov E. Diffraction Gratings and Applications (M. Dekker, New York, 1997).

    Google Scholar

    [5] Rößler F, Kunze T, Lasagni A F. Fabrication of diffraction based security elements using direct laser interference patterning. Opt Express 25, 22959-22970 (2017). doi: 10.1364/OE.25.022959

    CrossRef Google Scholar

    [6] Mahalik N P, Micromanufacturing and nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

    Google Scholar

    [7] Singh S. Diffraction gratings: aberrations and applications. Opt Laser Technol 31, 195-218 (1999). doi: 10.1016/S0030-3992(99)00019-5

    CrossRef Google Scholar

    [8] Saito A, Miyamura Y, Nakajima M, Ishikawa Y Sogo K et al. Reproduction of the Morpho blue by nanocasting lithography. J Vac Sci Technol B 24, 3248-3251 (2006). doi: 10.1116/1.2395950

    CrossRef Google Scholar

    [9] Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J Appl Phys 44, L48-L50 (2005).

    Google Scholar

    [10] Dusser B, Sagan Z, Soder H, Faure N, Colombier J P et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913-2924 (2010). doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [11] Tamamura Y, Miyaji G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation. Opt Mater Express 9, 2902-2909 (2019). doi: 10.1364/OME.9.002902

    CrossRef Google Scholar

    [12] Voisiat B, Wang W, Holzhey M, Lasagni A F. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning. Sci Rep 9, 7801 (2019). doi: 10.1038/s41598-019-44212-4

    CrossRef Google Scholar

    [13] Birnbaum M. Semiconductor surface damage produced by Ruby lasers. J Appl Phys 36, 3688-3689 (1965). doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [14] Clark S E, Emmony D C. Ultraviolet-laser-induced periodic surface structures. Phys Rev B 40, 2031-2041 (1989). doi: 10.1103/PhysRevB.40.2031

    CrossRef Google Scholar

    [15] Fauchet P M, Siegman A E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl Phys Lett 40, 824-826 (1982). doi: 10.1063/1.93274

    CrossRef Google Scholar

    [16] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385-407 (2013). doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [17] Papadopoulos A, Skoulas E, Mimidis A, Perrakis G, Kenanakis G et al. Biomimetic Omnidirectional Antireflective Glass via Direct Ultrafast Laser Nanostructuring. Adv. Mater 31, 1901123 (2019).

    Google Scholar

    [18] Tsibidis G D, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405(R) (2015). doi: 10.1103/PhysRevB.92.041405

    CrossRef Google Scholar

    [19] Rudenko A, Colombier J P, Itina T E. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys Rev B 93, 075427 (2016). doi: 10.1103/PhysRevB.93.075427

    CrossRef Google Scholar

    [20] Wang L, Xu B B, Cao X W, Li Q K, Tian W J et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4, 637-642 (2017). doi: 10.1364/OPTICA.4.000637

    CrossRef Google Scholar

    [21] Bonse J, Höhm S, Kirner S V, Rosenfeld A, Krüger J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J Sel Top Quant Electron 23, 9000615 (2017).

    Google Scholar

    [22] Öktem B, Pavlov I, Ilday S, Kalaycıoğlu H, Rybak A et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272

    CrossRef Google Scholar

    [23] Jin Y, Allegre O J, Perrie W, Abrams K, Ouyang J et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333-25353 (2013). doi: 10.1364/OE.21.025333

    CrossRef Google Scholar

    [24] Li G Q, Li J W, Hu Y L, Zhang C C, Li X H et al. Realization of diverse displays for multiple color patterns on metal surfaces. Appl Surf Sci 316, 451-455 (2014). doi: 10.1016/j.apsusc.2014.08.030

    CrossRef Google Scholar

    [25] Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017). doi: 10.1038/srep45114

    CrossRef Google Scholar

    [26] Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109-115 (1996). doi: 10.1007/BF01567637

    CrossRef Google Scholar

    [27] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92, 041914 (2008). doi: 10.1063/1.2834902

    CrossRef Google Scholar

    [28] Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J Appl Phys 103, 043513 (2008). doi: 10.1063/1.2842403

    CrossRef Google Scholar

    [29] Li G Q, Li J W, Yang L, Li X H, Hu Y L et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276, 203-209 (2013). doi: 10.1016/j.apsusc.2013.03.067

    CrossRef Google Scholar

    [30] Ionin A A, Kudryashov S I, Makarov S V, Seleznev L V, Sinitsyn D V et al. Femtosecond laser color marking of metal and semiconductor surfaces. Appl Phys A 107, 301-305 (2012).

    Google Scholar

    [31] Ahsan M S, Ahmed F, Kim Y G, Lee M S, Jun M B G. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci 257, 7771-7777 (2011). doi: 10.1016/j.apsusc.2011.04.027

    CrossRef Google Scholar

    [32] Gnilitskyi I, Derrien T J Y, Levy Y, Bulgakova N M, Mocek T, Orazi L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z

    CrossRef Google Scholar

    [33] Wang L, Chen Q D, Cao X W, Buividas R, Wang X W et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Sci Appl 6, e17112 (2017). doi: 10.1038/lsa.2017.112

    CrossRef Google Scholar

    [34] Højlund-Nielsen E, Weirich J, Nørregaard J, Garnaes J, Mortensen N A et al. Angle-independent structural colors of silicon. J Nanophotonics 8, 083988 (2014). doi: 10.1117/1.JNP.8.083988

    CrossRef Google Scholar

    [35] Yetisen A K, Butt H, Mikulchyk T, Ahmed R, Montelongo Y et al. Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security. Adv Opt Mater 4, 1589-1600 (2016). doi: 10.1002/adom.201600162

    CrossRef Google Scholar

    [36] Yao J W, Zhang C Y, Liu H Y, Dai Q F, Wu L J et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258, 7625-7632 (2012). doi: 10.1016/j.apsusc.2012.04.105

    CrossRef Google Scholar

    [37] Jwad T, Penchev P, Nasrollahi V, Dimov S. Laser induced ripples' gratings with angular periodicity for fabrication of diffraction holograms. Appl Surf Sci 453, 449-456 (2018). doi: 10.1016/j.apsusc.2018.04.277

    CrossRef Google Scholar

    [38] Romano J M, Garcia-Giron A, Penchev P, Dimov S. Triangular laser-induced submicron textures for functionalising stainless steel surfaces. Appl Surf Sci 440, 162-169 (2018). doi: 10.1016/j.apsusc.2018.01.086

    CrossRef Google Scholar

    [39] Torres R, Kaempfe T, Delaigue M, Parriaux O, Hönninger C et al. Influence of laser beam polarization on laser micro-machining of molybdenum. JLMN-J Laser Micro/Nanoeng 8, 188-191 (2013). doi: 10.2961/jlmn.2013.03.0001

    CrossRef Google Scholar

    [40] Beresna M, Gecevičius M, Kazansky P G, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 98, 201101 (2011). doi: 10.1063/1.3590716

    CrossRef Google Scholar

    [41] Nivas J J J, He S T, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929

    CrossRef Google Scholar

    [42] Nivas J J J, He S T, Song Z M, Rubano A, Vecchione A et al. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl Surf Sci 418, 565-571 (2017). doi: 10.1016/j.apsusc.2016.10.162

    CrossRef Google Scholar

    [43] Tsibidis G D, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172-5175 (2015). doi: 10.1364/OL.40.005172

    CrossRef Google Scholar

    [44] Hecht E. Optics 4th ed (Addison-Wesley, San Francisco, 2001).

    Google Scholar

    [45] Palmer C. Diffraction Grating Handbook 6th ed (Newport Corporation, Rochester, NY, 2005).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(9866) PDF downloads(2792) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint