Tan F Z, Lyu W M, Chen S Y, Liu Z Y, Yu C Y. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3, 190034 (2020). doi: 10.29026/oea.2020.190034
Citation: Tan F Z, Lyu W M, Chen S Y, Liu Z Y, Yu C Y. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3, 190034 (2020). doi: 10.29026/oea.2020.190034

Original Article Open Access

Contactless vital signs monitoring based on few-mode and multi-core fibers

More Information
  • Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper. In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset splicing is utilized for mode excitation. Extinction ratio and insertion loss are analyzed experimentally under different offset distances. The fabricated in-line interferometers are packaged under the mattress to realize contactless vital signs signals collection. By using filtering techniques, both respiration and heartbeat signals can be recovered successfully, and respiration as well as heartbeat ratio are obtained. Mode excitation and interference are theoretically analyzed in few-mode fiber while curvature sensing experiments using multi-core fiber interferometer are performed to verify its excellent performance on vital signs monitoring. The successful demonstration on contactless vital signs monitoring makes few-mode and multi-core fibers promising candidates for healthcare applications.
  • 加载中
  • [1] Khan Y, Ostfeld A E, Lochner C M, Pierre A, Arias A C. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater 28, 4373-4395 (2016). doi: 10.1002/adma.201504366

    CrossRef Google Scholar

    [2] Tsai S Y, Lee C H, Chen P H, Chung K H, Huang S H et al. Risk factors for early cardiovascular mortality in patients with bipolar disorder. Psychiatry Clin Neurosci 71, 716-724 (2017). doi: 10.1111/pcn.12538

    CrossRef Google Scholar

    [3] Wise R A, Chapman K R, Scirica B M, Schoenfeld D A, Bhatt D L et al. Long-term evaluation of the effects of aclidinium bromide on major adverse cardiovascular events and COPD exacerbations in patients with moderate to very severe COPD: rationale and design of the ASCENT COPD study. Chronic Obstr Pulm Dis 5, 5-15 (2018).

    Google Scholar

    [4] Zhang F X, Yu Y, Zhong J. Research status and development prospects of human vital signs monitoring clothing. IOP Conf Se Earth Environ Sci 233, 042031 (2019). doi: 10.1088/1755-1315/233/4/042031

    CrossRef Google Scholar

    [5] Wang Z H, Yang Z C, Dong T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors (Basel) 17, 341 (2017). doi: 10.3390/s17020341

    CrossRef Google Scholar

    [6] Guay P, Gorgutsa S, LaRochelle S, Messaddeq Y. Wearable contactless respiration sensor based on multi-material fibers integrated into textile. Sensors (Basel) 17, 1050 (2017). doi: 10.3390/s17051050

    CrossRef Google Scholar

    [7] Corbishley P, Rodriguez-Villegas E. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. IEEE Trans Biomed Eng 55, 196-204 (2008). doi: 10.1109/TBME.2007.910679

    CrossRef Google Scholar

    [8] Mimoz O, Benard T, Gaucher A, Frasca D, Debaene B. Accuracy of respiratory rate monitoring using a non-invasive acoustic method after general anaesthesia. Br J Anaesth 108, 872-875 (2012). doi: 10.1093/bja/aer510

    CrossRef Google Scholar

    [9] Pourbabaee B, Roshtkhari M J, Khorasani K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 48, 2095-2104 (2018). doi: 10.1109/TSMC.2017.2705582

    CrossRef Google Scholar

    [10] Vu E L, Rusin C G, Penny D J, Kibler K K, Easley R B et al. A novel electrocardiogram algorithm utilizing st-segment instability for detection of cardiopulmonary arrest in single ventricle physiology: a retrospective study. Pediatr Crit Care Med 18, 44-53 (2017). doi: 10.1097/PCC.0000000000000980

    CrossRef Google Scholar

    [11] Haberman Z C, Jahn R T, Bose R, Tun H, Shinbane J S et al. Wireless smartphone ECG enables large-scale screening in diverse populations. J Cardiovasc Electrophysiol 26, 520-526 (2015). doi: 10.1111/jce.12634

    CrossRef Google Scholar

    [12] Lochner C M, Khan Y, Pierre A, Arias A C. All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5, 5745 (2014). doi: 10.1038/ncomms6745

    CrossRef Google Scholar

    [13] Harju J, Tarniceriu A, Parak J, Vehkaoja A, Yli-Hankala A et al. Monitoring of heart rate and inter-beat intervals with wrist plethysmography in patients with atrial fibrillation. Physiol Meas 39, 065007 (2018). doi: 10.1088/1361-6579/aac9a9

    CrossRef Google Scholar

    [14] Liu J, Chen Y Y, Wang Y, Chen X, Cheng J et al. Monitoring vital signs and postures during sleep using wifi signals. IEEE Internet Things J 5, 2071-2084 (2018). doi: 10.1109/JIOT.2018.2822818

    CrossRef Google Scholar

    [15] Nosrati M, Shahsavari S, Lee S, Wang H, Tavassolian N. A concurrent dual-beam phased-array doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans Antennas Propag 67, 2390-2404 (2019). doi: 10.1109/TAP.2019.2893337

    CrossRef Google Scholar

    [16] Hui X N, Kan E C. Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nat Electron 1, 74-78 (2018). doi: 10.1038/s41928-017-0001-0

    CrossRef Google Scholar

    [17] Wadhwa N, Chen J G, Sellon J B, Wei D L, Rubinstein M et al. Motion microscopy for visualizing and quantifying small motions. Proc Natl Acad Sci USA 114, 11639-11644 (2017). doi: 10.1073/pnas.1703715114

    CrossRef Google Scholar

    [18] Chen X L, Shao J Y, An N L, Li X M, Tian H M et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C 3, 11806-11814 (2015). doi: 10.1039/C5TC02173A

    CrossRef Google Scholar

    [19] Sadek I, Seet E, Biswas J, Abdulrazak B, Mokhtari M. Nonintrusive vital signs monitoring for sleep apnea patients: a preliminary study. IEEE Access 6, 2506-2514 (2018). doi: 10.1109/ACCESS.2017.2783939

    CrossRef Google Scholar

    [20] Garcia I, Zubia J, Durana G, Aldabaldetreku G, Illarramendi M A et al. Optical fiber sensors for aircraft structural health monitoring. Sensors (Basel) 15, 15494-15519 (2015). doi: 10.3390/s150715494

    CrossRef Google Scholar

    [21] Barrias A, Casas J R, Villalba S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748 (2016). doi: 10.3390/s16050748

    CrossRef Google Scholar

    [22] Yang X F, Chen Z H, Elvin C S M, Janice L H Y, Ng S H et al. Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens J 15, 757-761 (2015). doi: 10.1109/JSEN.2014.2353640

    CrossRef Google Scholar

    [23] Yu C Y, Xu W, Zhang N, Yu C C. Non-invasive smart health monitoring system based on optical fiber interferometers. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks 1-3 (IEEE, 2017); http://doi.org/10.1109/ICOCN.2017.8121526.

    Google Scholar

    [24] Inan O T, Migeotte P F, Park K S, Etemadi M, Tavakolian K et al. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Health Inform 19, 1414-1427 (2015). doi: 10.1109/JBHI.2014.2361732

    CrossRef Google Scholar

    [25] Li G F, Bai N, Zhao N B, Xia C. Space-division multiplexing: the next frontier in optical communication. Adv Opt Photonics 6, 413-487 (2014). doi: 10.1364/AOP.6.000413

    CrossRef Google Scholar

    [26] Rademacher G, Ryf R, Fontaine N K, Chen H S, Essiambre R J et al. Long-haul transmission over few-mode fibers with space-division multiplexing. J Lightw Technol 36, 1382-1388 (2018). doi: 10.1109/JLT.2017.2786671

    CrossRef Google Scholar

    [27] Van Newkirk A, Antonio-Lopez E, Salceda-Delgado G, Amezcua-Correa R, Schülzgen A. Optimization of multicore fiber for high-temperature sensing. Opt Lett 39, 4812-4815 (2014). doi: 10.1364/OL.39.004812

    CrossRef Google Scholar

    [28] Villatoro J, Arrizabalaga O, Durana G, Saez de Ocariz I, Antonio-Lopez E et al. Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres. Sci Rep 7, 4451 (2017). doi: 10.1038/s41598-017-04902-3

    CrossRef Google Scholar

    [29] Zhao Z Y, Dang Y L, Tang M, Li B R, Gan L et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt Lett 42, 171-174 (2017). doi: 10.1364/OL.42.000171

    CrossRef Google Scholar

    [30] Li A, Wang Y F, Fang J, Li M J, Kim B Y et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt Lett 40, 1488-1491 (2015). doi: 10.1364/OL.40.001488

    CrossRef Google Scholar

    [31] Zhao Z Y, Tang M, Fu S N, Liu S, Wei H F et al. All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing. Appl Phys B 112, 491-497 (2013). doi: 10.1007/s00340-013-5634-8

    CrossRef Google Scholar

    [32] Chen S Y, Huang Z Y, Tan F Z, Yang T Y, Tu J J et al. Vital signs monitoring using few-mode fiber-based sensors. Proc SPIE 10814, 108140P (2018).

    Google Scholar

    [33] Chen S Y, Tan F Z, Huang Z Y, Yang T Y, Tu J J et al. Non-invasive smart monitoring system based on multi-core fiber optic interferometers. In Proceedings of 2018 Asia Communications and Photonics Conference 1-3 (IEEE, 2018); http://doi.org/10.1109/ACP.2018.8595907.

    Google Scholar

    [34] Tan F Z, Liu Z Y, Chen S Y, Yu C Y. Vital signs monitoring using twin core fiber-based sensor. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC) (IEEE, 2019).

    Google Scholar

    [35] Weng Y, Ip E, Pan Z Q, Wang T. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Opt Express 23, 9024-9039 (2015). doi: 10.1364/OE.23.009024

    CrossRef Google Scholar

    [36] Yin G L, Lou S Q, Lu W L, Wang X. A high-sensitive fiber curvature sensor using twin core fiber-based filter. Appl Phys B 115, 99-104 (2014).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(12579) PDF downloads(2527) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint