Citation: | Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D et al. 10-GHz broadband optical frequency comb generation at 1550/1310 nm. Opto-Electron Adv 3, 190033 (2020). doi: 10.29026/oea.2020.190033 |
[1] | Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635-639 (2000). doi: 10.1126/science.288.5466.635 |
[2] | Quinlan F, Ycas G, Osterman S, Diddams S A. A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration. Rev Sci Instrum 81, 063105 (2010). doi: 10.1063/1.3436638 |
[3] | Wilken T, Curto G L, Probst R A, Steinmetz T, Manescau A et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611-614 (2012). doi: 10.1038/nature11092 |
[4] | Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics 1, 463-467 (2007). doi: 10.1038/nphoton.2007.139 |
[5] | Cundiff S T, Weiner A M. Optical arbitrary waveform generation. Nat Photonics 4, 760-766 (2010). doi: 10.1038/nphoton.2010.196 |
[6] | Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech 58, 3269-3278 (2010). doi: 10.1109/TMTT.2010.2076970 |
[7] | Hu H, Da Ros F, Pu M H, Ye F H, Ingerslev K et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics 12, 469-473 (2018). doi: 10.1038/s41566-018-0205-5 |
[8] | Bartels A, Heinecke D, Diddams S A. 10-GHz self-referenced optical frequency comb. Science 326, 681 (2009). doi: 10.1126/science.1179112 |
[9] | Yoshida M, Yoshida K, Kasai K, Nakazawa M. 1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser. Opt Express 24, 24287-24296 (2016). doi: 10.1364/OE.24.024287 |
[10] | Nakazawa M, Kasai K, Yoshida M. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 μm. Opt Lett 33, 2641-2643 (2008). doi: 10.1364/OL.33.002641 |
[11] | Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev 8, 368-393 (2014). doi: 10.1002/lpor.201300126 |
[12] | Dou Y J, Zhang H M, Yao M Y. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photonics Technol Lett 24, 727-729 (2012). doi: 10.1109/LPT.2012.2187330 |
[13] | Wu R, Supradeepa V R, Long C M, Leaird D E, Weiner A M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett 35, 3234-3236 (2010). doi: 10.1364/OL.35.003234 |
[14] | Metcalf A J, Torres-Company V, Leaird D E, Weiner A M. High-power broadly tunable electrooptic frequency comb generator. IEEE J Sel Top Quant Electron 19, 3500306 (2013). |
[15] | Ishizawa A, Nishikawa T, Mizutori A, Takara H, Aozasa S et al. Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking. Electron Lett 46, 1343-1344 (2010). doi: 10.1049/el.2010.2228 |
[16] | Yang X, Richardson D J, Petropoulos P. Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping. J Lightwave Technol 30, 1971-1977 (2012). doi: 10.1109/JLT.2012.2193383 |
[17] | Yang T, Dong J J, Liao S S, Huang D X, Zhang X L. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt Express 21, 8508-8520 (2013). doi: 10.1364/OE.21.008508 |
[18] | Myslivets E, Alic N, Radic S. High resolution measurement of arbitrary-dispersion fibers: dispersion map reconstruction techniques. J Lightwave Technol 28, 3478-3487 (2010). |
[19] | Myslivets E, Kuo B P P, Alic N, Radic S. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt Express 20, 3331-3344 (2012). doi: 10.1364/OE.20.003331 |
[20] | Ataie V, Temprana E, Liu L, Myslivets E, Kuo B P P et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer. J Lightwave Technol 33, 694-699 (2015). doi: 10.1109/JLT.2015.2388579 |
[21] | Rueda A, Sedlmeir F, Kumari M, Leuchs G, Schwefel H G L. Resonant electro-optic frequency comb. Nature 568, 378-381 (2019). doi: 10.1038/s41586-019-1110-x |
[22] | Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7 |
[23] | Barry L P, Del Burgo S, Thomsen B, Watts R T, Reid D A et al. Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating. IEEE Photonics Technol Lett 14, 971-973 (2002). doi: 10.1109/LPT.2002.1012402 |
[24] | Agrawal G P. Nonlinear Fiber Optics 3rd ed (Academic Press, San Diego, 2001). |
[25] | Huang Y L, Li Q, Han J Y, Jia Z X, Yu Y S et al. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity. Optica 6, 1491-1497 (2019). doi: 10.1364/OPTICA.6.001491 |
[26] | Weng H Z, Han J Y, Li Q, Yang Y D, Xiao J L et al. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop. Appl Phys B 124, 91 (2018). |
[27] | Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274-279 (2017). doi: 10.1038/nature22387 |
[28] | Chen Z G, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper. Opt Express 17, 5852-5860 (2009). doi: 10.1364/OE.17.005852 |
[29] | Yao C C, Jia Z X, Li Z R, Jia S J, Zhao Z P et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica 5, 1264-1270 (2018). doi: 10.1364/OPTICA.5.001264 |
[30] | Yao C C, Zhao Z P, Jia Z X, Li Q, Hu M L et al. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber. Appl Phys Lett 109, 101102 (2016). doi: 10.1063/1.4962391 |
[31] | Jia Z X, Yao C C, Jia S J, Wang F, Wang S B et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Appl Phys Lett 110, 261106 (2017). doi: 10.1063/1.4990681 |
Supplementary information for 10-GHz broadband optical frequency comb generation at 1550/1310 nm |
The 10 GHz OFC and a 2.3-ps pulse generated from a mode-locked laser with (a) OFC spectrum, and (b) reconstructed temporal pulse profile (blue solid curve) and Gaussian fitting curve (red dotted curve).
Optical spectra after propagation in 500 m HNLF.
(a) RF spectrum from the broadened frequency comb at 20 dBm pump power (RBW=200 kHz and VBW=50 kHz). (b) Reconstructed temporal pulse profile with a FWHM duration of 291 fs after transmitting a 4 m SMF at 20 dBm pump power (blue solid curve) and Gaussian fitting curve (red dotted curve).
Optical spectra of the generated flat-topped OFC.
(a) Experimental supercontinuum spectra designed to produce a dispersive wave centered around 1310 nm. (b) RF spectra from the generated 1310 nm dispersion wave at 32 dBm pump power (RBW=200 kHz and VBW=50 kHz).
The calculated dispersions of the fibers with different sizes. Insets, scanning electron microscope images of the fibers with the diameters of 3.7 μm, 3.3 μm and 3.1 μm, respectively.
(a) Optical spectra with a dispersive wave centered around 1310 nm from a fluorotellurite fiber under different launched powers of the femtosecond laser. (b) Optical spectra with tunable dispersive waves ranging from 1150 nm to 1310 nm from fluorotellurite fibers 1, 2, 3 with ZDWs at 1358 nm, 1409 nm and 1452 nm, respectively.
(a) The simulated and measured SC from the fluorotellurite fiber with the ZDW of 1452 nm and the peak pump power of 387 W. (b) RF spectrum from the generated 1310 nm dispersion wave in the fluorotellurite fiber (RBW=200 kHz and VBW=50 kHz).