He P H , Zhang H C, Gao X X, Niu L Y, Tang W X et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements.Opto-Electron Adv 2, 190001 (2019). doi: 10.29026/oea.2019.190001
Citation: He P H , Zhang H C, Gao X X, Niu L Y, Tang W X et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements.Opto-Electron Adv 2, 190001 (2019). doi: 10.29026/oea.2019.190001

Original Article Open Access

A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements

More Information
  • These authors contributed equally to this work

  • Corresponding author: T J Cui, E-mail: tjcui@seu.edu.cn
  • Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern large-scale integrated circuits and chips. In this work, a new spoof SPP transmission line (TL) with zigzag grooves is proposed. This new structure can achieve stronger field confinement compared to conventional one with the same strip width. In other words, the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size. Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs. Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size. Furthermore, two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration. Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL. Hence, this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.
  • 加载中
  • [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [2] Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Lett 9, 2553-2558 (2009). doi: 10.1021/nl900638p

    CrossRef Google Scholar

    [3] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [4] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J et al. Biosensing with plasmonic nanosensors. Nat Mater 7, 442-453 (2008). doi: 10.1038/nmat2162

    CrossRef Google Scholar

    [5] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11, 174-177 (2012). doi: 10.1038/nmat3263

    CrossRef Google Scholar

    [6] Pendry J B, Martín-Moreno L, García-Vidal F J. Mimicking surface plasmons with structured surfaces. Science 305, 847-848 (2004). doi: 10.1126/science.1098999

    CrossRef Google Scholar

    [7] Goubau G. On the excitation of surface waves. Proc IRE 40, 865-868 (1952). doi: 10.1109/JRPROC.1952.273856

    CrossRef Google Scholar

    [8] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons. Science 308, 670-672 (2005). doi: 10.1126/science.1109043

    CrossRef Google Scholar

    [9] García-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7, S97-S101 (2005). doi: 10.1088/1464-4258/7/2/013

    CrossRef Google Scholar

    [10] Juluri B K, Lin S C S, Walker T R, Jensen L, Huang T J. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Opt Express 17, 2997-3006 (2009). doi: 10.1364/OE.17.002997

    CrossRef Google Scholar

    [11] Elliott R. On the theory of corrugated plane surfaces. Trans IRE Prof Group Antennas Propag 2, 71-81 (1954). doi: 10.1109/T-AP.1954.27975

    CrossRef Google Scholar

    [12] Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97, 176805 (2006). doi: 10.1103/PhysRevLett.97.176805

    CrossRef Google Scholar

    [13] Nagpal P, Lindquist N C, Oh S H, Norris D J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594-597 (2009). doi: 10.1126/science.1174655

    CrossRef Google Scholar

    [14] Zhou Y J, Jiang Q, Cui T J. Bidirectional bending splitter of designer surface plasmons. Appl Phys Lett 99, 111904 (2011). doi: 10.1063/1.3639277

    CrossRef Google Scholar

    [15] Rivas J G. Terahertz: the art of confinement. Nat Photonics 2, 137-138 (2008). doi: 10.1038/nphoton.2008.12

    CrossRef Google Scholar

    [16] Gan Q Q, Fu Z, Ding Y J, Bartoli F J. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100, 256803 (2008). doi: 10.1103/PhysRevLett.100.256803

    CrossRef Google Scholar

    [17] Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015).

    Google Scholar

    [18] Pors A, Moreno E, Martín-Moreno L, Pendry J B, García-Vidal F J. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Llett 108, 223905 (2012). doi: 10.1103/PhysRevLett.108.223905

    CrossRef Google Scholar

    [19] Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale7, 14982-14988 (2015). doi: 10.1039/C5NR03304G

    CrossRef Google Scholar

    [20] Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [21] Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv2, e1501168 (2016). doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [22] Gao H, Li Y, Chen L W, Jin J J, Pu M B et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale 10, 666-671 (2018). doi: 10.1039/C7NR07873K

    CrossRef Google Scholar

    [23] Gan Q Q, Gao Y K, Wagner K, Vezenov D, Ding Y J et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc Natl Acad Sci USA 108, 5169-5173 (2011). doi: 10.1073/pnas.1014963108

    CrossRef Google Scholar

    [24] Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2, 175-179 (2008). doi: 10.1038/nphoton.2007.301

    CrossRef Google Scholar

    [25] Shen X P, Cui T J, Martin-Cano D, García-Vidal F J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA110, 40-45 (2013). doi: 10.1073/pnas.1210417110

    CrossRef Google Scholar

    [26] Kianinejad A, Chen Z N, Qiu C W. Spoof plasmon-based slow-wave excitation of dielectric resonator antenna. IEEE Trans Antennas Propag 64, 2094-2099 (2016). doi: 10.1109/TAP.2016.2545738

    CrossRef Google Scholar

    [27] Zhang H C, Tang W X, Xu J, Liu S, Liu J F et al. Reduction of shielding-box volume using SPP-like transmission lines. IEEE Trans Comp, Packag Manuf Technol 7, 1486-1492 (2017). doi: 10.1109/TCPMT.2017.2700950

    CrossRef Google Scholar

    [28] Zhang H C, Cui T J, Xu J, Tang W X, Liu J F. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv Mater Technol 2, 1600202 (2017). doi: 10.1002/admt.v2.1

    CrossRef Google Scholar

    [29] He P H, Zhang H C, Tang W X, Wang Z X, Yan R T et al. A multi-layer spoof surface plasmon polariton waveguide with corrugated ground. IEEE Access 5, 25306-25311 (2017). doi: 10.1109/ACCESS.2017.2768481

    CrossRef Google Scholar

    [30] Kianinejad A, Chen Z N, Qiu C W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microw Theory Tech 63, 1817-1825 (2015). doi: 10.1109/TMTT.2015.2422694

    CrossRef Google Scholar

    [31] Zhang D W, Zhang K, Wu Q, Yang G H, Sha X J. High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure. Opt Lett 42, 2766-2769 (2017). doi: 10.1364/OL.42.002766

    CrossRef Google Scholar

    [32] Zhang D W, Zhang K, Wu Q, Dai R W, Sha X J. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency. Opt Lett 43, 3176-3179 (2018). doi: 10.1364/OL.43.003176

    CrossRef Google Scholar

    [33] Zhang H C, Zhang Q, Liu J F, Tang W X, Fan Y F et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci Rep 6, 23396 (2016). doi: 10.1038/srep23396

    CrossRef Google Scholar

    [34] Zhang H C, Cui T J, Zhang Q, Fan Y F, Fu X J. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333-1340 (2015). doi: 10.1021/acsphotonics.5b00316

    CrossRef Google Scholar

    [35] Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev 8, 146-151 (2014). doi: 10.1002/lpor.201300118

    CrossRef Google Scholar

    [36] Pan B C, Liao Z, Zhao J, Cui T J. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Express 22, 13940-13950 (2014). doi: 10.1364/OE.22.013940

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(7932) PDF downloads(2557) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint