Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018). doi: 10.29026/oea.2018.180007
Citation: Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018). doi: 10.29026/oea.2018.180007

Review Open Access

Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures

More Information
  • These authors contributed equally to this work

  • Corresponding author: Z Y Fang, E-mail: zhyfang@pku.edu.cn
  • Cathodoluminescence (CL) as a radiative light produced by an electron beam exciting a luminescent material, has been widely used in imaging and spectroscopic detection of semiconductor, mineral and biological samples with an ultrahigh spatial resolution. Conventional CL spectroscopy shows an excellent performance in characterization of traditional material luminescence, such as spatial composition variations and fluorescent displays. With the development of nanotechnology, advances of modern microscopy enable CL technique to obtain deep valuable insight of the testing sample, and further extend its applications in the material science, especially for opto-electronic investigations at nanoscale. In this article, we review the study of CL microscopy applied in semiconductor nanostructures for the dislocation, carrier diffusion, band structure, doping level and exciton recombination. Then advantages of CL in revealing and manipulating surface plasmon resonances of metallic nanoantennas are discussed. Finally, the challenge of CL technology is summarized, and potential CL applications for the future opto-electronic study are proposed.
  • 加载中
  • [1] Coenen T, Haegel N M. Cathodoluminescence for the 21st century: Learning more from light. Appl Phys Rev 4, 031103 (2017). doi: 10.1063/1.4985767

    CrossRef Google Scholar

    [2] Pohl D W, Fischer U C, Dürig U T. Scanning near-field optical microscopy (Snom). J Microsc 152, 853–861 (1988). doi: 10.1111/jmi.1988.152.issue-3

    CrossRef Google Scholar

    [3] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature 406, 981–985 (2000). doi: 10.1038/35023143

    CrossRef Google Scholar

    [4] Pratesi G, Giudice A L, Vishnevsky S, Manfredotti C, Cipriani C. Cathodoluminescence investigations on the Popigai, Ries, and Lappajarvi impact diamonds. Am Mineral 88, 1778–1787 (2003). doi: 10.2138/am-2003-11-1218

    CrossRef Google Scholar

    [5] Pennycook S J. Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning 30, 287–298 (2008). doi: 10.1002/sca.v30:4

    CrossRef Google Scholar

    [6] Watanabe K, Nagata T, Wakayama Y, Sekiguchi T, Erdélyi R et al. Band-Gap Deformation Potential and Elasticity Limit of Semiconductor Free-Standing Nanorods Characterized in Situ by Scanning Electron Microscope-Cathodoluminescence Nanospectroscopy. ACS Nano 9, 2989–3001 (2015). doi: 10.1021/nn507159u

    CrossRef Google Scholar

    [7] Brenny B J M, Coenen T, Polman A. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J Appl Phys 115, 244307 (2014). doi: 10.1063/1.4885426

    CrossRef Google Scholar

    [8] Storm K, Halvardsson F, Heurlin M, Lindgren D, Gustafsson A et al. Spatially resolved Hall effect measurement in a single semiconductor nanowire. Nat Nanotechnol 7, 718–722 (2012). doi: 10.1038/nnano.2012.190

    CrossRef Google Scholar

    [9] Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T et al. Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors. Appl Phys Express 4, 112402 (2011). doi: 10.1143/APEX.4.112402

    CrossRef Google Scholar

    [10] Barnett W A, Wise M L H, Jones E C. Cathodoluminescence of biological molecules, macromolecules and cells. J Microsc 105, 299–303 (1975). doi: 10.1111/jmi.1975.105.issue-3

    CrossRef Google Scholar

    [11] Coenen T, Brenny B J M, Vesseur E J, Polman A. Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull 40, 359–365 (2015). doi: 10.1557/mrs.2015.64

    CrossRef Google Scholar

    [12] Kociak M, Zagonel L F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017). doi: 10.1016/j.ultramic.2017.03.014

    CrossRef Google Scholar

    [13] Gotze J. Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374, 703–708 (2002). doi: 10.1007/s00216-002-1461-1

    CrossRef Google Scholar

    [14] Sauer R, Sternschulte H, Wahl S, Thonke K, Anthony T R. Revised fine splitting of excitons in diamond. Phys Rev Lett 84, 4172–4175 (2000). doi: 10.1103/PhysRevLett.84.4172

    CrossRef Google Scholar

    [15] Koizumi S, Watanabe K, Hasegawa M, Kanda H. Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001). doi: 10.1126/science.1060258

    CrossRef Google Scholar

    [16] Li G G, Geng D L, Shang M M, Peng C, Cheng Z Y et al. Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors. J Mater Chem 21, 13334 (2011). doi: 10.1039/c1jm11650a

    CrossRef Google Scholar

    [17] Edwards P R, Martin R W. Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Tech 26, 064005 (2011). doi: 10.1088/0268-1242/26/6/064005

    CrossRef Google Scholar

    [18] Dierre B, Yuan X L, Sekiguchi T. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Sci Technol Adv Mater 11, 043001 (2010). doi: 10.1088/1468-6996/11/4/043001

    CrossRef Google Scholar

    [19] Leto A, Pezzotti G. Cathodoluminescence study of off-stoichiometry and residual stresses in advanced dielectrics and related devices. Phys Status Solidi A 208, 1119–1126 (2011). doi: 10.1002/pssa.v208.5

    CrossRef Google Scholar

    [20] Zhai T Y, Fang X S, Bando Y, Dierre B, Liu B D et al. Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Adv Funct Mater 19, 2423–2430 (2009). doi: 10.1002/adfm.v19:15

    CrossRef Google Scholar

    [21] Gautam U K, Panchakarla L S, Dierre B, Fang X S, Bando Y et al. Solvothermal Synthesis, Cathodoluminescence, and Field-Emission Properties of Pure and N-Doped ZnO Nanobullets. Adv Funct Mater 19, 131–140 (2009). doi: 10.1002/adfm.v19:1

    CrossRef Google Scholar

    [22] Yacobi B G, Holt D B. Cathodoluminescence scanning electron microscopy of semiconductors. J Appl Phys 59, R1–R24 (1986). doi: 10.1063/1.336491

    CrossRef Google Scholar

    [23] Shubina T V, Ivanov S V, Jmerik V N, Solnyshkov D D, Vekshin V A et al. Mie resonances, infrared emission, and the band gap of InN. Phys Rev Lett 92, 117407 (2004). doi: 10.1103/PhysRevLett.92.117407

    CrossRef Google Scholar

    [24] Schue L, Berini B, Betz A C, Placais B, Ducastelle F et al. Dimensionality effects on the luminescence properties of hBN. Nanoscale 8, 6986–6993 (2016). doi: 10.1039/C6NR01253A

    CrossRef Google Scholar

    [25] Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E et al. Plasmonic excitation and manipulation with an electron beam. MRS Bull 37, 752–760 (2012). doi: 10.1557/mrs.2012.174

    CrossRef Google Scholar

    [26] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [27] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999

    CrossRef Google Scholar

    [28] Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M et al. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3, 348–353 (2007). doi: 10.1038/nphys575

    CrossRef Google Scholar

    [29] Choi H, Pile D F P, Nam S, Bartal G, Zhang X. Compressing surface plasmons for nano-scale optical focusing. Opt Express 17, 7519–7524 (2009). doi: 10.1364/OE.17.007519

    CrossRef Google Scholar

    [30] Dionne J A, Sweatlock L A, Atwater H A, Polman A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73, 035407 (2006). doi: 10.1103/PhysRevB.73.035407

    CrossRef Google Scholar

    [31] Yamamoto N, Bhunia S, Watanabe Y. Polarized cathodoluminescence study of InP nanowires by transmission electron microscopy. Appl Phys Lett 88, 153106 (2006). doi: 10.1063/1.2168043

    CrossRef Google Scholar

    [32] Vesseur E J R, Coenen T, Caglayan H, Engheta N, Polman A. Experimental verification of n=0 structures for visible light. Phys Rev Lett 110, 013902 (2013). doi: 10.1103/PhysRevLett.110.013902

    CrossRef Google Scholar

    [33] Narvaez A C, Weppelman I G C, Moerland R J, Liv N, Zonnevylle A C et al. Cathodoluminescence Microscopy of nanostructures on glass substrates. Opt Express 21, 29968–29978 (2013). doi: 10.1364/OE.21.029968

    CrossRef Google Scholar

    [34] Aubry A, Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, Maier S A et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett 10, 2574–2579 (2010). doi: 10.1021/nl101235d

    CrossRef Google Scholar

    [35] Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7, 2784–2788 (2007). doi: 10.1021/nl071340m

    CrossRef Google Scholar

    [36] Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88, 057403 (2002). doi: 10.1103/PhysRevLett.88.057403

    CrossRef Google Scholar

    [37] Bashevoy M V, Jonsson F, MacDonald K F, Chen Y, Zheludev N I. Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. Opt Express 15, 11313–11320 (2007). doi: 10.1364/OE.15.011313

    CrossRef Google Scholar

    [38] Vesseur E J R, de Waele R, Kuttge M, Polman A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett 7, 2843–2846 (2007). doi: 10.1021/nl071480w

    CrossRef Google Scholar

    [39] Kuttge M, de Abajo F J G, Polman A. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett 10, 1537–1541 (2010). doi: 10.1021/nl902546r

    CrossRef Google Scholar

    [40] Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, de Abajo F J G et al. Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. Nano Lett 7, 3612–3617 (2007). doi: 10.1021/nl071789f

    CrossRef Google Scholar

    [41] Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C et al. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano 3, 2965–2974 (2009). doi: 10.1021/nn900571z

    CrossRef Google Scholar

    [42] Day J K, Large N, Nordlander P, Halas N J. Standing wave plasmon modes interact in an antenna-coupled nanowire. Nano Lett 15, 1324–1330 (2015). doi: 10.1021/nl5045428

    CrossRef Google Scholar

    [43] Arango F B, Coenen T, Koenderink A F. Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval. ACS Photonics 1, 444–453 (2014). doi: 10.1021/ph5000133

    CrossRef Google Scholar

    [44] Acar H, Coenen T, Polman A, Kuipers L K. Dispersive Ground Plane Core-Shell Type Optical Monopole Antennas Fabricated with Electron Beam Induced Deposition. ACS Nano 6, 8226–8232 (2012). doi: 10.1021/nn302907j

    CrossRef Google Scholar

    [45] Koh A L, Bao K, Khan I, Smith W E, Kothleitner G et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009). doi: 10.1021/nn900922z

    CrossRef Google Scholar

    [46] Flauraud V, Bernasconi G D, Butet J, Alexander D T L, Martin O J F et al. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy. ACS Nano 11, 3485–3495 (2017). doi: 10.1021/acsnano.6b08589

    CrossRef Google Scholar

    [47] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light-Sci Appl 2, e118–e118 (2013). doi: 10.1038/lsa.2013.74

    CrossRef Google Scholar

    [48] Sun Q, Yu H, Ueno K, Kubo A, Matsuo Y et al. Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano 10, 3835–3842 (2016). doi: 10.1021/acsnano.6b00715

    CrossRef Google Scholar

    [49] Toth M, Phillips M R. Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves. Scanning 20, 425–432 (1998).

    Google Scholar

    [50] Titchmarsh J M, Booker G R, Harding W, Wight D R. Carrier recombination at dislocations in epitaxial gallium phosphide layers. J Mater Sci Mater Med 12, 341–346 (1977). doi: 10.1007/BF00566276

    CrossRef Google Scholar

    [51] Nakagawa K, Maeda K, Takeuchi S. Observation of dislocations in cadmium telluride by cathodoluminescence microscopy. Appl Phys Lett 34, 574 (1979). doi: 10.1063/1.90871

    CrossRef Google Scholar

    [52] Zarem H A, Sercel P C, Lebens J A, Eng L E, Yariv A et al. Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence. Appl Phys Lett 55, 1647–1649 (1989). doi: 10.1063/1.102226

    CrossRef Google Scholar

    [53] Merano M, Sonderegger S, Crottini A, Collin S, Renucci P et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005). doi: 10.1038/nature04298

    CrossRef Google Scholar

    [54] Chen H L, Himwas C, Scaccabarozzi A, Rale P, Oehler F et al. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence. Nano Lett 17, 6667–6675 (2017). doi: 10.1021/acs.nanolett.7b02620

    CrossRef Google Scholar

    [55] Kaganer V M, Sabelfeld K K, Brandt O. Piezoelectric field, exciton lifetime, and cathodoluminescence intensity at threading dislocations in GaN{0001}. Appl Phys Lett 112, 122101 (2018). doi: 10.1063/1.5022170

    CrossRef Google Scholar

    [56] Pozina G, Ciechonski R, Bi Z X, Samuelson L, Monemar B. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence. Appl Phys Lett 107, 251106 (2015). doi: 10.1063/1.4938208

    CrossRef Google Scholar

    [57] Jahn U, Miguel-Sánchez J, Flissikowski T, Grahn H T, Hey R et al. Carrier diffusion lengths in (In, Ga)(As, N)/GaAs quantum wells studied by spatially resolved cathodoluminescence. Phys Status Solidi C 3, 627–630 (2006). doi: 10.1002/(ISSN)1610-1642

    CrossRef Google Scholar

    [58] Pauc N, Phillips M R, Aimez V, Drouin D. Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence. Appl Phys Lett 89, 161905 (2006). doi: 10.1063/1.2357881

    CrossRef Google Scholar

    [59] Jahn U, Ristić J, Calleja E. Cathodoluminescence spectroscopy and imaging of GaN∕(Al, Ga)N nanocolumns containing quantum disks. Appl Phys Lett 90, 161117 (2007). doi: 10.1063/1.2724913

    CrossRef Google Scholar

    [60] Li Z W, Li Y, Han T Y, Wang X L, Yu Y et al. Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. ACS Nano 11, 1165–1171 (2017). doi: 10.1021/acsnano.6b06834

    CrossRef Google Scholar

    [61] Li Z W, Xiao Y D, Gong Y J, Wang Z P, Kang Y M et al. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 9, 10158–10164 (2015). doi: 10.1021/acsnano.5b03764

    CrossRef Google Scholar

    [62] Zu S, Li B W, Gong Y J, Li Z W, Ajayan P M et al. Active control of plasmon-exciton coupling in MoS2-Ag hybrid nanostructures. Adv Opt Mater 4, 1463–1469 (2016). doi: 10.1002/adom.v4.10

    CrossRef Google Scholar

    [63] Li Y, Li Z W, Chi C, Shan H Y, Zheng L S et al. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv Sci (Weinh) 4, 1600430 (2017). doi: 10.1002/advs.201600430

    CrossRef Google Scholar

    [64] Li B W, Zu S, Zhou J D, Jiang Q, Du B W et al. Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers. ACS Nano 11, 9720–9727 (2017). doi: 10.1021/acsnano.7b05479

    CrossRef Google Scholar

    [65] Li Z W, Ye R Q, Feng R, Kang Y M, Zhu X et al. Graphene Quantum Dots Doping of MoS2 Monolayers. Adv Mater 27, 5235–5240 (2015). doi: 10.1002/adma.201501888

    CrossRef Google Scholar

    [66] Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv Mater 26, 6467–6471 (2014). doi: 10.1002/adma.201401802

    CrossRef Google Scholar

    [67] Zheng S J, So J K, Liu F C, Liu Z, Zheludev N et al. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett 17, 6475–6480 (2017). doi: 10.1021/acs.nanolett.7b03585

    CrossRef Google Scholar

    [68] Becker J, Trügler A, Jakab A, Hohenester U, S nnichsen C. The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing. Plasmonics 5, 161–167 (2010). doi: 10.1007/s11468-010-9130-2

    CrossRef Google Scholar

    [69] Jung K Y, Teixeira F L, Reano R M. Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band. J Lightwave Technol 25, 2757–2765 (2007). doi: 10.1109/JLT.2007.902100

    CrossRef Google Scholar

    [70] Knight M W, Liu L F, Wang Y M, Brown L, Mukherjee S et al. Aluminum plasmonic nanoantennas. Nano Lett 12, 6000–6004 (2012). doi: 10.1021/nl303517v

    CrossRef Google Scholar

    [71] Christ A, Tikhodeev S G, Gippius N A, Kuhl J, Giessen H. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91, 183901 (2003). doi: 10.1103/PhysRevLett.91.183901

    CrossRef Google Scholar

    [72] Han T Y, Zu S, Li Z W, Jiang M L, Zhu X et al. Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. Nano Lett 18, 567–572 (2018). doi: 10.1021/acs.nanolett.7b04705

    CrossRef Google Scholar

    [73] Zu S, Bao Y J, Fang Z Y. Planar plasmonic chiral nanostructures. Nanoscale 8, 3900–3905 (2016). doi: 10.1039/C5NR09302C

    CrossRef Google Scholar

    [74] Zu S, Han T, Jiang M, Lin F, Zhu X et al. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. ACS Nano 12, 3908–3916 (2018). doi: 10.1021/acsnano.8b01380

    CrossRef Google Scholar

    [75] Coenen T, Vesseur E J R, Polman A, Koenderink A F. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett 11, 3779–3784 (2011). doi: 10.1021/nl201839g

    CrossRef Google Scholar

    [76] Estrin Y, Rich D H, Kretinin A V, Shtrikman H. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence. Nano Lett 13, 1602–1610 (2013). doi: 10.1021/nl400015a

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(10718) PDF downloads(3686) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint