Wei S B, Wang D P, Lin J, Yuan X C. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv 1, 180006 (2018). doi: 10.29026/oea.2018.180006
Citation: Wei S B, Wang D P, Lin J, Yuan X C. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv 1, 180006 (2018). doi: 10.29026/oea.2018.180006

Original Article Open Access

Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity

More Information
  • Orbital angular momentum (OAM) mode division provides a promising solution to push past the already exhausted available degrees of freedom available in conventional optical communications. Nevertheless, the practical deployment of OAM within a free-space optical (FSO) communications system is still hampered by a major challenge, namely that OAM-based FSO links are vulnerable to disturbances. Though several techniques, such as using various non-diffraction beams and multiple transmit–receive apertures, are proposed to alleviate the influence of disturbances, these techniques significantly reduce the performance with regard to combating single fading for spatial blockages of the laser beam by obstructions. In this work, we initially demonstrate that a Fabry-Pérot resonant cavity has the ability to implement OAM mode healing, even for a blocking percentage of over 50%. Consequently, the proposed method will expand the use of OAM in the FSO secure communications and quantum encryption fields.
  • 加载中
  • [1] Bliokh K Y, Rodríguez-Fortu o F J, Nori F, Zayats A V. Spin–orbit interactions of light. Nat Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [2] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [3] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [4] Belmonte A, Torres J P. Optical doppler shift with structured light. Opt Lett 36, 4437–4439 (2011). doi: 10.1364/OL.36.004437

    CrossRef Google Scholar

    [5] Lavery M P, Speirits F C, Barnett S M, Padgett M J. Detection of a spinning object using light's orbital angular momentum. Science 341, 537–540 (2013). doi: 10.1126/science.1239936

    CrossRef Google Scholar

    [6] Mirhosseini M, Maga a-Loaiza O S, O'Sullivan M N, Rodenburg B, Malik M et al. High-dimensional quantum cryptography with twisted light. New J Phys 17, 033033 (2015). doi: 10.1088/1367-2630/17/3/033033

    CrossRef Google Scholar

    [7] Ren H, Li X, Zhang Q, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016). doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [8] Berkhout G C, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys Rev Lett 101, 100801 (2008). doi: 10.1103/PhysRevLett.101.100801

    CrossRef Google Scholar

    [9] Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [10] Lei T, Zhang M, Li Y R, Jia P, Liu G N et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings.Light Sci Appl 4, e257 (2015). doi: 10.1038/lsa.2015.30

    CrossRef Google Scholar

    [11] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 5, 4876 (2014). doi: 10.1038/ncomms5876

    CrossRef Google Scholar

    [12] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'Ko V et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 12, 5448–5456 (2004). doi: 10.1364/OPEX.12.005448

    CrossRef Google Scholar

    [13] Lin J, Yuan X C, Tao S H, Burge R E. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl Opt 46, 4680–4685 (2007). doi: 10.1364/AO.46.004680

    CrossRef Google Scholar

    [14] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66–106 (2015). doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [15] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6, 488–496 (2012). doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [16] Bondarescu M, Thorne K S. New family of light beams and mirror shapes for future LIGO interferometers. Phys Rev D 74, 082003 (2006). doi: 10.1103/PhysRevD.74.082003

    CrossRef Google Scholar

    [17] Mours B, Tournefier E, Vinet J Y. Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes. Class Quantum Gravity 23, 5777–5784 (2006). doi: 10.1088/0264-9381/23/20/001

    CrossRef Google Scholar

    [18] Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195

    CrossRef Google Scholar

    [19] Li Y, Zhang Y X. Oam mode of the hankel–bessel vortex beam in weak to strong turbulent link of marine-atmosphere. Laser Phys 27, 045201 (2017). doi: 10.1088/1555-6611/aa5c16

    CrossRef Google Scholar

    [20] Tyson R K. Bit-error rate for free-space adaptive optics laser communications. J Opt Soc Am A Opt Image Sci Vis 19, 753–758 (2002). doi: 10.1364/JOSAA.19.000753

    CrossRef Google Scholar

    [21] Navidpour S M, Uysal M, Kavehrad M. Ber performance of free-space optical transmission with spatial diversity. IEEE Trans Wireless Commun 6, 2813–2819 (2007). doi: 10.1109/TWC.2007.06109

    CrossRef Google Scholar

    [22] Ma J, Jiang Y J, Tan L Y, Yu S Y, Du W H. Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system. Opt Lett 33, 2611–2613 (2008). doi: 10.1364/OL.33.002611

    CrossRef Google Scholar

    [23] Cheng M J, Guo L X, Li J T, Zhang Y X. Channel capacity of the oam-based free-space optical communication links with bessel–gauss beams in turbulent ocean. IEEE Photonics J 8, 7901411 (2016).

    Google Scholar

    [24] Yuan Y S, Lei T, Li Z H, Li Y J, Gao S C et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using bessel beams. Sci Rep 7, 42276 (2017). doi: 10.1038/srep42276

    CrossRef Google Scholar

    [25] Lavery M P J, Peuntinger C, Günthner K, Banzer P, Elser D et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv 3, e1700552 (2017). doi: 10.1126/sciadv.1700552

    CrossRef Google Scholar

    [26] Abramovici A, Althouse W E, Drever R W P, Gürsel Y, Kawamura S et al. LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992). doi: 10.1126/science.256.5055.325

    CrossRef Google Scholar

    [27] Rüdiger A, Schilling R, Schnupp L, Winkler W, Billing H et al. A mode selector to suppress fluctuations in laser beam geometry. J Mod Opt 28, 641–658 (1981).

    Google Scholar

    [28] de Graauw T, Haser L N, Beintema D A, Roelfsema P R, van Agthoven H et al. Observing with the ISO short-wavelength spectrometer. Astrono Astrophys 315, L49–L54 (1996).

    Google Scholar

    [29] Jacquinot P. New developments in interference spectroscopy. Rep Prog Phys 23, 267–312 (1960). doi: 10.1088/0034-4885/23/1/305

    CrossRef Google Scholar

    [30] Sun X L, Djordjevic I B. Physical-layer security in orbital angular momentum multiplexing free-space optical communications. IEEE Photonics J 8, 7901110 (2016).

    Google Scholar

    [31] Gouy L G. Surune PropriÉTÉ Nouvelle Des Ondes Lumineuses (Gauthier-Villars, 1890).

    Google Scholar

    [32] Wei S B, Earl S K, Yuan X C, Kou S S, Lin J. Active sorting of orbital angular momentum states of light with cascaded tunable resonators (2017); https://arxiv.org/abs/1704.01703.

    Google Scholar

    [33] Siegmann A E. Lasers (University Science Books, 1986).

    Google Scholar

    [34] Andrews D L, Babiker M, editors. The Angular Momentum of Light, 379–382 (Cambridge University Press, 2012).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(8823) PDF downloads(3082) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint