Feng HG, Chen X, Zhu RZ et al. Seeing at a distance with multicore fibers. Opto-Electron Adv 7, 230202 (2024). doi: 10.29026/oea.2024.230202
Citation: Feng HG, Chen X, Zhu RZ et al. Seeing at a distance with multicore fibers. Opto-Electron Adv 7, 230202 (2024). doi: 10.29026/oea.2024.230202

Article Open Access

Seeing at a distance with multicore fibers

More Information
  • Corresponding author: F Xu, E-mail: feixu@nju.edu.cn
  • Images and videos provide a wealth of information for people in production and life. Although most digital information is transmitted via optical fiber, the image acquisition and transmission processes still rely heavily on electronic circuits. The development of all-optical transmission networks and optical computing frameworks has pointed to the direction for the next generation of data transmission and information processing. Here, we propose a high-speed, low-cost, multiplexed parallel and one-piece all-fiber architecture for image acquisition, encoding, and transmission, called the Multicore Fiber Acquisition and Transmission Image System (MFAT). Based on different spatial and modal channels of the multicore fiber, fiber-coupled self-encoding, and digital aperture decoding technology, scenes can be observed directly from up to 1 km away. The expansion of capacity provides the possibility of parallel coded transmission of multimodal high-quality data. MFAT requires no additional signal transmitting and receiving equipment. The all-fiber processing saves the time traditionally spent on signal conversion and image pre-processing (compression, encoding, and modulation). Additionally, it provides an effective solution for 2D information acquisition and transmission tasks in extreme environments such as high temperatures and electromagnetic interference.
  • 加载中
  • [1] Yang JC, Wang CG, Jiang B et al. Visual perception enabled industry intelligence: state of the art, challenges and prospects. IEEE Trans Ind Inform 17, 2204–2219 (2021). doi: 10.1109/TII.2020.2998818

    CrossRef Google Scholar

    [2] Esteva A, Chou K, Yeung S et al. Deep learning-enabled medical computer vision. npj Digit Med 4, 5 (2021). doi: 10.1038/s41746-020-00376-2

    CrossRef Google Scholar

    [3] Guan BO, Jin L, Ma J et al. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081

    CrossRef Google Scholar

    [4] Ma XD, Fan MZ, Cai YQ et al. A Fabry–Pérot fiber-optic array for photoacoustic imaging. IEEE Trans Instrum Meas 71, 4501508 (2022).

    Google Scholar

    [5] Yang LY, Li YP, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [6] Zhao HX, Li K, Yang F et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo. Opto-Electron Adv 4, 200017 (2021)

    Google Scholar

    [7] Zhang XG, Sun YL, Zhu BC et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications. Light Sci Appl 11, 126 (2022). doi: 10.1038/s41377-022-00817-5

    CrossRef Google Scholar

    [8] Guan BL, Su ZL, Yu QF et al. Monitoring the blades of a wind turbine by using videogrammetry. Opt Lasers Eng 152, 106901 (2022). doi: 10.1016/j.optlaseng.2021.106901

    CrossRef Google Scholar

    [9] Cao JH, Yang ZB, Li HQ et al. Rotating blade frequency identification by single-probe blade tip timing. Mech Syst Signal Process 172, 108961 (2022). doi: 10.1016/j.ymssp.2022.108961

    CrossRef Google Scholar

    [10] Voulodimos A, Doulamis N, Doulamis A et al. Deep learning for computer vision: A brief review. Comput Intell Neurosci 2018, 7068349 (2018).

    Google Scholar

    [11] Sharma P, Pardeshi S, Arora RK et al. A review of the development in the field of fiber optic communication systems. Int J Emerg Technol Adv Eng 3, 113–119 (2013).

    Google Scholar

    [12] Morero DA, Castrillon MA, Aguirre A et al. Design tradeoffs and challenges in practical coherent optical transceiver implementations. J Light Technol 34, 121–136 (2016). doi: 10.1109/JLT.2015.2470114

    CrossRef Google Scholar

    [13] Kim I, Martins RJ, Jang J et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol 16, 508–524 (2021). doi: 10.1038/s41565-021-00895-3

    CrossRef Google Scholar

    [14] Pan MY, Fu YF, Zheng MJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7

    CrossRef Google Scholar

    [15] Shin YJ, Powers EJ, Choe TS et al. Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable. IEEE Trans Instrum Meas 54, 2493–2500 (2005). doi: 10.1109/TIM.2005.858115

    CrossRef Google Scholar

    [16] Yang J, Fletcher JE, O'Reilly J. Short-circuit and ground fault analyses and location in VSC-based DC network cables. IEEE Trans Ind Electron 59, 3827–3837 (2012). doi: 10.1109/TIE.2011.2162712

    CrossRef Google Scholar

    [17] Ji MY, Caire G, Molisch AF. Wireless device-to-device caching networks: Basic principles and system performance. IEEE J Sel Areas Commun 34, 176–189 (2016). doi: 10.1109/JSAC.2015.2452672

    CrossRef Google Scholar

    [18] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci Appl 8, 27 (2019). doi: 10.1038/s41377-019-0140-3

    CrossRef Google Scholar

    [19] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photon 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [20] Puttnam BJ, Rademacher G, Luís RS. Space-division multiplexing for optical fiber communications. Optica 8, 1186–1203 (2021). doi: 10.1364/OPTICA.427631

    CrossRef Google Scholar

    [21] Sun JW, Wu JC, Wu S et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci Appl 11, 204 (2022). doi: 10.1038/s41377-022-00898-2

    CrossRef Google Scholar

    [22] Du Y, Turtaev S, Leite IT et al. Hybrid multimode-multicore fibre based holographic endoscope for deep-tissue neurophotonics. Light Adv Manuf 3, 29 (2022).

    Google Scholar

    [23] Shin J, Tran DN, Stroud JR et al. A minimally invasive lens-free computational microendoscope. Sci Adv 5, eaaw5595 (2019). doi: 10.1126/sciadv.aaw5595

    CrossRef Google Scholar

    [24] Lin X, Rivenson Y, Yardimci NT et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084

    CrossRef Google Scholar

    [25] Wetzstein G, Ozcan A, Gigan S et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6

    CrossRef Google Scholar

    [26] Shastri BJ, Tait AN, De Lima TF et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photon 15, 102–114 (2021). doi: 10.1038/s41566-020-00754-y

    CrossRef Google Scholar

    [27] Shi WX, Huang Z, Huang HH et al. LOEN: Lensless opto-electronic neural network empowered machine vision. Light Sci Appl 11, 121 (2022). doi: 10.1038/s41377-022-00809-5

    CrossRef Google Scholar

    [28] Bai BJ, Luo Y, Gan TY et al. To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects. eLight 2, 14 (2022). doi: 10.1186/s43593-022-00021-3

    CrossRef Google Scholar

    [29] Bai BJ, Li YH, Luo Y et al. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci Appl 12, 69 (2023). doi: 10.1038/s41377-023-01116-3

    CrossRef Google Scholar

    [30] Chen YT, Zhou TK, Wu JM et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci Adv 9, eadf8437 (2023). doi: 10.1126/sciadv.adf8437

    CrossRef Google Scholar

    [31] Okamoto K. Fundamentals of Optical Waveguides 3rd ed (Academic Press, San Diego, 2022).

    Google Scholar

    [32] Zhang Q, Rothe S, Koukourakis N et al. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photon 7, 066104 (2022). doi: 10.1063/5.0088605

    CrossRef Google Scholar

    [33] Rothe S, Zhang Q, Koukourakis N et al. Intensity-only mode decomposition on multimode fibers using a densely connected convolutional network. J Light Technol 39, 1672–1679 (2021). doi: 10.1109/JLT.2020.3041374

    CrossRef Google Scholar

    [34] Sun JW, Koukourakis N, Czarske JW. Complex wavefront shaping through a multi-core fiber. Appl Sci 11, 3949 (2021). doi: 10.3390/app11093949

    CrossRef Google Scholar

    [35] Pareek NK, Patidar V, Sud KK. Image encryption using chaotic logistic map. Image Vis Comput 24, 926–934 (2006). doi: 10.1016/j.imavis.2006.02.021

    CrossRef Google Scholar

    [36] Kumari M, Gupta S, Sardana P. A survey of image encryption algorithms. 3D Res 8, 37 (2017). doi: 10.1007/s13319-017-0148-5

    CrossRef Google Scholar

    [37] Yan LS, Liu X, Shieh W. Toward the Shannon limit of spectral efficiency. IEEE Photon J 3, 325–330 (2011). doi: 10.1109/JPHOT.2011.2127468

    CrossRef Google Scholar

    [38] Sorokina MA, Turitsyn SK. Regeneration limit of classical Shannon capacity. Nat Commun 5, 3861 (2014). doi: 10.1038/ncomms4861

    CrossRef Google Scholar

    [39] Xiong YF, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photon 2, 064001 (2020).

    Google Scholar

  • Supplementary information for Seeing at a distance with multicore fibers
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(969) PDF downloads(370) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint