Zhu RC, Wang JF, Qiu TS, Yang DK, Feng B et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148
Citation: Zhu RC, Wang JF, Qiu TS, Yang DK, Feng B et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148

Article Open Access

Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network

More Information
  • Complex-amplitude holographic metasurfaces (CAHMs) with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level, leading to higher image-reconstruction quality compared with their natural counterparts. However, prevailing design methods of CAHMs are based on Huygens-Fresnel theory, meta-atom optimization, numerical simulation and experimental verification, which results in a consumption of computing resources. Here, we applied residual encoder-decoder convolutional neural network to directly map the electric field distributions and input images for monolithic metasurface design. A pretrained network is firstly trained by the electric field distributions calculated by diffraction theory, which is subsequently migrated as transfer learning framework to map the simulated electric field distributions and input images. The training results show that the normalized mean pixel error is about 3% on dataset. As verification, the metasurface prototypes are fabricated, simulated and measured. The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the target electric field, which demonstrates the effectiveness of our design. Encouragingly, this work provides a monolithic field-to-pattern design method for CAHMs, which paves a new route for the direct reconstruction of metasurfaces.
  • 加载中
  • [1] Sun SL, He Q, Hao JM, Xiao SY, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics 11, 380–479 (2019). doi: 10.1364/AOP.11.000380

    CrossRef Google Scholar

    [2] Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885

    CrossRef Google Scholar

    [3] Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018). doi: 10.29026/oea.2018.180010

    CrossRef Google Scholar

    [4] Huang FC, Chiu CN, Wu TL, Chiou YP. A circular-ring miniaturized-element metasurface with many good features for frequency selective shielding applications. IEEE Trans Electromagn Compat 57, 365–374 (2015). doi: 10.1109/TEMC.2015.2389855

    CrossRef Google Scholar

    [5] Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [6] Jin ZW, Janoschka D, Deng JH, Ge L, Dreher P et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021). doi: 10.1186/s43593-021-00005-9

    CrossRef Google Scholar

    [7] Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [8] Ra’di Y, Simovski CR, Tretyakov SA. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 3, 037001 (2015). doi: 10.1103/PhysRevApplied.3.037001

    CrossRef Google Scholar

    [9] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [10] Xu HX, Hu GW, Wang YZ, Wang CH, Wang MZ et al. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci Appl 10, 75 (2021). doi: 10.1038/s41377-021-00507-8

    CrossRef Google Scholar

    [11] Lou Q, Chen ZN. Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces. IEEE Trans Antennas Propag 69, 6977–6981 (2021). doi: 10.1109/TAP.2021.3076312

    CrossRef Google Scholar

    [12] Zhou Y, Liang G F, Wen Z Q et al. Recent research progress in optical super-resolution planar meta-lenses. Opto-Electron Eng 48, 210399 (2021). doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [13] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [14] Chen K, Feng YJ, Monticone F, Zhao JM, Zhu B et al. A reconfigurable active Huygens’ metalens. Adv Mater 29, 1606422 (2017). doi: 10.1002/adma.201606422

    CrossRef Google Scholar

    [15] Wang Q, Xu Q, Zhang XQ, Tian CX, Xu YH et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics 5, 599–606 (2018). doi: 10.1021/acsphotonics.7b01173

    CrossRef Google Scholar

    [16] Yoon G, Lee D, Nam KT, Rho J. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics 5, 1643–1647 (2018). doi: 10.1021/acsphotonics.7b01044

    CrossRef Google Scholar

    [17] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [18] Shang GY, Wang ZC, Li HY, Zhang K, Wu Q et al. Metasurface holography in the microwave regime. Photonics 8, 135 (2021). doi: 10.3390/photonics8050135

    CrossRef Google Scholar

    [19] Wan WW, Gao J, Yang XD. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541 (2017). doi: 10.1002/adom.201700541

    CrossRef Google Scholar

    [20] Xu K, Wang X E, Fan X H et al. Meta-holography: from concept to realization. Opto-Electron Eng 49, 220183 (2022). doi: 10.12086/oee.2022.220183

    CrossRef Google Scholar

    [21] Zhao RZ, Huang LL, Wang YT. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [22] Jiang Q, Jin GF, Cao LC. When metasurface meets hologram: principle and advances. Adv Opt Photonics 11, 518–576 (2019). doi: 10.1364/AOP.11.000518

    CrossRef Google Scholar

    [23] Mu YH, Zheng MY, Qi JR, Li HM, Qiu JH. A large field-of-view metasurface for complex-amplitude hologram breaking numerical aperture limitation. Nanophotonics 9, 4749–4759 (2020). doi: 10.1515/nanoph-2020-0448

    CrossRef Google Scholar

    [24] Zhao WY, Jiang H, Liu BY, Song J, Jiang YY et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep 6, 30613 (2016). doi: 10.1038/srep30613

    CrossRef Google Scholar

    [25] Wang L, Kruk S, Tang HZ, Li T, Kravchenko I et al. Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016). doi: 10.1364/OPTICA.3.001504

    CrossRef Google Scholar

    [26] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [27] Huang K, Dong ZG, Mei ST, Zhang L, Liu YJ et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10, 500–509 (2016). doi: 10.1002/lpor.201500314

    CrossRef Google Scholar

    [28] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [29] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [30] Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Sci Adv 2, e1501258 (2016). doi: 10.1126/sciadv.1501258

    CrossRef Google Scholar

    [31] Min CJ, Liu JP, Lei T, Si GY, Xie ZW et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev 10, 978–985 (2016). doi: 10.1002/lpor.201600101

    CrossRef Google Scholar

    [32] Deng ZL, Deng JH, Zhuang X, Wang S, Li KF et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [33] Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q et al. Carbon nanotube based high resolution holograms. Adv Mater 24, OP331–OP336 (2012).

    Google Scholar

    [34] Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk’yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [35] Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [36] Liu LX, Zhang XQ, Kenney M, Su XQ, Xu NN et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26, 5031–5036 (2014). doi: 10.1002/adma.201401484

    CrossRef Google Scholar

    [37] Lee GY, Yoon G, Lee SY, Yun H, Cho J et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018). doi: 10.1039/C7NR07154J

    CrossRef Google Scholar

    [38] Shen C, Xu RL, Sun JL, Wang Z, Wei S. Metasurface-based holographic display with all-dielectric meta-axilens. IEEE Photonics J 13, 4600105 (2021).

    Google Scholar

    [39] Wang Q, Zhang XQ, Xu YH, Gu JQ, Li YF et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867

    CrossRef Google Scholar

    [40] Burch J, Di Falco A. Surface topology specific metasurface holograms. ACS Photonics 5, 1762–1766 (2018). doi: 10.1021/acsphotonics.7b01449

    CrossRef Google Scholar

    [41] Li LL, Zhao HT, Liu C, Li L, Cui TJ. Intelligent metasurfaces: control, communication and computing. eLight 2, 7 (2022). doi: 10.1186/s43593-022-00013-3

    CrossRef Google Scholar

    [42] Chen ZG, Segev M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021). doi: 10.1186/s43593-021-00002-y

    CrossRef Google Scholar

    [43] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [44] Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [45] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl 7, 60 (2018). doi: 10.1038/s41377-018-0060-7

    CrossRef Google Scholar

    [46] Peurifoy J, Shen YC, Jing L, Yang Y, Cano-Renteria F et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv 4, eaar4206 (2018). doi: 10.1126/sciadv.aar4206

    CrossRef Google Scholar

    [47] Nadell CC, Huang BH, Malof JM, Padilla WJ. Deep learning for accelerated all-dielectric metasurface design. Opt Express 27, 27523–27535 (2019). doi: 10.1364/OE.27.027523

    CrossRef Google Scholar

    [48] Liu DJ, Tan YX, Khoram E, Yu ZF. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018). doi: 10.1021/acsphotonics.7b01377

    CrossRef Google Scholar

    [49] Wiecha PR, Arbouet A, Girard C, Muskens OL. Deep learning in nano-photonics: inverse design and beyond. Photonics Res 9, B182–B200 (2021). doi: 10.1364/PRJ.415960

    CrossRef Google Scholar

    [50] Zheng ZH, Zhu SK, Chen Y, Chen HY, Chen JH. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012

    CrossRef Google Scholar

    [51] Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [52] Qian C, Zheng B, Shen YC, Jing L, Li EP et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [53] Jia YT, Qian C, Fan ZX, Ding YZ, Wang ZD et al. In situ customized illusion enabled by global metasurface reconstruction. Adv Funct Mater 32, 2109331 (2022). doi: 10.1002/adfm.202109331

    CrossRef Google Scholar

    [54] Qian C, Wang ZD, Qian HL, Cai T, Zheng B et al. Dynamic recognition and mirage using neuro-metamaterials. Nat Commun 13, 2694 (2022). doi: 10.1038/s41467-022-30377-6

    CrossRef Google Scholar

    [55] Whiting EB, Campbell SD, Kang L, Werner DH. Meta-atom library generation via an efficient multi-objective shape optimization method. Opt Express 28, 24229–24242 (2020). doi: 10.1364/OE.398332

    CrossRef Google Scholar

    [56] Liu C, Yu WM, Ma Q, Li LL, Cui TJ. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photonics Res 9, B159–B167 (2021). doi: 10.1364/PRJ.416287

    CrossRef Google Scholar

    [57] Huang M, Zheng B, Cai T, Li XF, Liu J et al. Machine–learning-enabled metasurface for direction of arrival estimation. Nanophotonics 11, 2001–2010 (2022). doi: 10.1515/nanoph-2021-0663

    CrossRef Google Scholar

    [58] Qie JR, Khoram E, Liu DJ, Zhou M, Gao L. Real-time deep learning design tool for far-field radiation profile. Photonics Res 9, B104–B108 (2021). doi: 10.1364/PRJ.413567

    CrossRef Google Scholar

    [59] Zhu S, Guo EL, Gu J, Bai LF, Han J. Imaging through unknown scattering media based on physics-informed learning. Photonics Res 9, B210–B219 (2021). doi: 10.1364/PRJ.416551

    CrossRef Google Scholar

    [60] Chen H, Zhang Y, Kalra MK, Lin F, Chen Y et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36, 2524–2535 (2017). doi: 10.1109/TMI.2017.2715284

    CrossRef Google Scholar

    [61] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 86, 2278–2324 (1998). doi: 10.1109/5.726791

    CrossRef Google Scholar

  • Supplementary information for Direct field-to-pattern monolithic design of holographic metasurface via residual encoderdecoder convolutional neural network
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(4895) PDF downloads(1012) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint