

DOI: 10.12086/oee.2018.170660

基于二值振幅调控的角向偏振光 超振荡聚焦平面透镜

武志翔^{1,2},金启见^{1,2},张 坤^{1,2},张智海^{1,2},梁高峰^{1,2},温中泉^{1,2},余安平^{1,2},陈 刚^{1,2*}

¹重庆大学光电工程学院,重庆 400044; ²重庆大学光电技术及系统教育部重点实验室,重庆 400044

Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave

Wu Zhixiang^{1,2}, Jin Qijian^{1,2}, Zhang Kun^{1,2}, Zhang Zhihai^{1,2}, Liang Gaofeng^{1,2},

Wen Zhongquan^{1,2}, Yu Anping^{1,2}, Chen Gang^{1,2*}

¹College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; ²Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China

Abstract: Tight focus of azimuthally polarized wave finds its applications in optical super-resolution, particle trapping and so on. To overcome the disadvantages of conventional optics, including bulky size and difficult for integration, a binary-amplitude (0, 1) super-oscillatory planar lens is designed for sub-diffraction focusing of azimuthally polarized wave at wavelength of 632.8 nm. The lens radius is 650λ , and its focal length is 200λ . The corresponding numerical aperture is 0.96. The experimental results demonstrate the generation of a hollow spot with circular ring shape on the focal plane. The inner full-width-at-half-maximum of the hollow spot is 0.368λ , smaller than the super-oscillatory

收稿日期: 2017-12-03; 收到修改稿日期: 2018-02-08

基金项目:国家重点基础研究发展计划资助项目(2013CBA01700);国家自然科学基金资助项目(61575031,61177093)

作者简介:武志翔(1986-),男,硕士,博士研究生,主要从事超分辨光学器件的研究。E-mail:20140801002@cqu.edu.cn 通信作者:陈刚(1973-),男,博士,教授,主要从事微纳光学器件及系统的研究。E-mail:gchen1@cqu.edu.cn

criterion (0.398 λ), and the maximum sidelobe ratio is about 36.7%. Such planar lenses are easy to fabricate. Their small size and ultra-thin thickness make them promising in system minimization and integration for different applications, such as optical microscopy, optical trapping and ultra-high density data storage.

Keywords: super-oscillatory focusing; planar lens; azimuthally polarized wave; dark spot

Citation: Wu Z X, Jin Q J, Zhang K, *et al.* Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. *Opto-Electronic Engineering*, 2018, **45**(4): 170660

1 引 言

柱矢量光束在传播过程中,其偏振方向、电场强 度呈柱对称分布。由于其优越的光学聚焦特性,近年 来, 柱矢量光束聚焦光场在超分辨光学显微[1-2]、粒子 操控[3-4]以及光刻[5]等领域引起了广泛的关注。作为一 种柱矢量光束,角向偏振光在其光束横截面内,其偏 振方向与径向垂直。因其角向偏振特性,角向偏振光 常被用于空心聚焦光场的产生[6-8]。采用高数值孔径传 统透镜对角向偏振光进行聚焦,是产生空心聚焦光场 的常用方法,这方面已有大量理论研究报道[9-12]。基于 Richards-Wolf 矢量衍射方法,对双环角向偏振光聚焦 特性的理论研究表明:采用高数值孔径锥透镜可以实 现内径半高全宽(full-width-at-half-maxima, FWHM) 为 0.5λ 的空心聚焦光场,其焦深达到 48λ^[10]。利用高 数值孔径聚焦物镜(NA=1.4),结合二值相位(0, π)板, 对角向偏振光进行聚焦,中心聚焦光斑峰-峰间距可达 到 0.24λ, 然而, 此时其最大旁瓣强度约为中心光环峰 值强度的 44 倍^[11]。针对具有不同偏振态、拓扑荷的入 射光场,通过对高数值孔径透镜(NA=0.99)的光瞳函数 进行振幅、相位优化,理论上可以产生超衍射空心聚 焦光斑,内径半高宽能达到0.31¹²。然而,传统高数 值孔径透镜体积大、价格昂贵,且不利于集成。近年 来,尺寸小、质量轻、厚度超薄的平面透镜得到了快 速的发展,特别是基于光学超振荡机制[13-14]的平面透 镜可以实现更小的焦斑尺寸[15]。超振荡聚焦平面透镜 已有大量的实验报道[16-26],其不但可以实现超衍射聚 焦,更有利于实现光学系统的小型化和集成化。采用 聚焦平面透镜实现超衍射空心聚焦光场的相关理论和 实验研究已有报道[27-30]。基于交叉偏振相位调控的金 属透镜,可以将径向偏振光转化为角向偏振光,并实 现内径半高全宽为 0.4λ 的超衍射空心聚焦光场[27]。采 用基于介质同心环的二值相位超振荡平面透镜对角向 偏振光进行聚焦,在实验上获得了内径半高全宽为 0.61λ(<0.5λ/NA)的超衍射空心聚焦光斑^[28]和内径半高 全宽为 0.34λ~0.52λ、长度为 10λ 的空心光针^[29]。基于 归一化角谱压缩思想设计的超振荡聚焦透镜,可以实现长度大于 100λ 的超衍射空心光针^[30]。与二值相位透镜相比,二值振幅透镜利用金属薄膜实现透射振幅调控(透射率为 0 和 1 的两种情形)。而且,采用金属薄膜实现同心圆环,对纵向加工精度要求较低,易于透镜制备。

本文面向超衍射空心聚焦光场的产生,提出了一 种基于金属同心圆环结构的二值振幅型超振荡平面透 镜(super-oscillation lens, SOL)。针对波长 λ=632.8 nm, 设计并制备了平面透镜样品。实验结果表明,该平面 透镜实现了对角向偏振光的超振荡聚焦,所产生的超 振荡空心聚焦光场,内径半高全宽为 0.368λ (0.38λ/NA)。

2 理论设计

图 1(a)是在角向偏振光入射条件下,二值振幅型 超振荡平面透镜的聚焦示意图。角向偏振光从透镜基 底一侧入射,通过透镜上的一系列环形狭缝后,在焦 平面上进行干涉,从而形成空心聚焦光场。插图给出 了入射角向偏振光的光场分布,其中箭头所示为入射 光的偏振方向。图 1(b)是二值振幅型超振荡聚焦平面 透镜的基本结构,该透镜由制作在玻璃基底上的一系 列同心金属圆环构成。*R*lens 为透镜半径,金属环厚度 为*t*,*R*_i为第*i*个环形金属狭缝中心到透镜中心的距离, 狭缝宽度为 *nT*(*n* 为整数,*T* 为狭缝的最小宽度)。通 常*T*的取值应小于一个工作波长,并保证最小缝宽对 应的光振幅透过率为 1^[31]。

在超振荡聚焦平面透镜设计中,入射角向偏振光 为拉盖尔-高斯光束,式(1)为该光束在柱坐标系下的光 场空间分布^[28],其中 r 为径向坐标,z 为轴向坐标, E_0 为光场振幅, w_0 为光腰,w(z)为 <math>z 处的光腰, $k=2\pi/\lambda$ 为波数(λ 为波长),R(z)为 z 处波前的曲率半径, z_0 为 瑞利距离。入射光透过平面透镜后,所产生的衍射光 场通过矢量角谱方法进行计算^[32-33],式(2)为角向偏振 光矢量角谱衍射的计算公式,其中 E_{φ} 为电场角向偏振 分量, z_f 为衍射距离, $A(\rho)$ 为透射光场角谱(ρ 为径向

图 1 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜。(a) 工作原理; (b) 结构示意图, (上) 俯视图和(下)横截面图

Fig. 1 Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave. (a) Working principle; (b) Basic structures, (top) top view and (bottom) cross-section view

空间频率), $q(l)=(1/\lambda^2-l^2)^{1/2}$ 为波矢量轴向分量, J_1 为一 阶贝塞尔函数,g(r)和t(r)分别为入射光场的复振幅空 间分布和透镜的透射函数。

$$E(r,z) = E_0 \frac{w_0}{w(z)^2} r \exp\left(-\frac{r^2}{w(z)^2}\right)$$

$$\cdot \exp\left\{j\left[kz + \frac{kr^2}{2R(z)} - 2\arctan\left(\frac{z}{z_0}\right)\right]\right\}, \quad (1)$$

$$\left\{E_{\varphi}(r,z_f) = \int_0^{\infty} A(\rho) \exp(j2\pi q(\rho)z_f) + J_1(2\pi\rho r) 2\pi\rho d\rho\right\}, \quad (2)$$

针对工作波长 λ=632.8 nm,设定超振荡聚焦平面 透镜半径和焦距分别为 650λ 和 200λ,利用粒子群算 法^[34],在入射端面角向偏振光场参数为 w₀=331 μm 和 z=276 mm 的条件下,对该透镜的二值振幅透射函数 t(r)进行优化,在所设定的焦平面上获得了内径半高宽 为 0.349λ 的超振荡空心聚焦光场。对应的焦平面光场 分布如图 2 所示,图中蓝色曲线为光强的径向分布, 其峰-峰距为 0.705λ;最大旁瓣与峰值强度之比为 14.9%;空心光环内径半高宽为 0.349λ,小于超振荡判 据(0.38λ/NA)^[35],实现了超振荡聚焦。红色曲线表示相 位沿径向的变化,由图可知在光强极小处存在约为 3.14 rad 的相位跳变,这种相位跳变是超振荡现象的特 征之一。

表 1 为透镜振幅透射率沿径向分布的十六进制表示。将十六进制表示转换为二进制表示后,其第 *i* 位 二进制值给出了中心半径为 *r_i、*宽度为 *T* 的圆环形区 域内的振幅透射率(0 或 1)。

图 2 理论设计的聚焦光场分布: 光场在焦平面(z=200λ)上的强度分布(蓝色)和相位分布(红色) Fig. 2 The distribution of the focusing optical field obtained in numerical design: The optical intensity (blue) and phase distribution (red) on the focal plane at z=200λ

表1 超振荡聚焦平面透镜振幅分布

Number of ring slit	Transmittance of ring slit
#1~#208	CA80 07FF C03F 80FC 1F0F 078F 1E38 E38E 718C 6339 98CC CCCC CCD9
#209~#416	9336 4C9B 64DB 6492 4925 B6D2 5B49 6969 696B 4B5A D295 AD6B 52B5
#417~#624	2B52 A54A 952A D52A 956A A552 AB55 4AAB 5556 AAB5 556A AAAD 5555
#625~#832	4AAA AAAD 5555 5555 54AA AAAA AAAA AAAA
#833~#1040	AAB5 5555 5555 554E AAAA AAB4 9555 5556 AAAA ACB5 5555 2AAA AAC5
#1040~ #1176	5556 2AAA B955 556A AAA5 5554 AAAA 9555 3A

3 Comsol 仿真

根据所设计的透镜透射函数,采用 Comsol Multiphysics 对超振荡聚焦平面透镜进行实物建模,其中 金属环采用厚度为 100 nm 的金属铝(折射率为 $n_{Al}=$ 1.267+i7.281@ λ =632.8 nm),基底采用 SiO₂ 玻璃(折射 率为 $n_{SiO2}=1.457@\lambda$ =632.8 nm)。在上述角向偏振光入 射情况下,仿真结果表明:在距透镜出射面 z=126.5 μm (199.9λ)的平面内形成了空心聚焦光场(如图 3(a)所 示)。在焦平面内,中心光环的强度远大于其周围的旁 瓣。对应的光强径向分布如图 3(b)所示,由图可知, 中心空心光环峰-峰距为 0.694λ,最大旁瓣与峰值强度 之比为 17.5%,内径半高全宽为 0.346λ。这些仿真结 果均与理论设计吻合。图 3(b)的插图为在整个仿真的

图 3 Comsol Multiphysics 数值仿真结果。(a) 焦平面上的光场强度分布图; (b) 焦平面上光场强度沿径向的 分布曲线; (c) 空心聚焦光场的峰值强度(红)、内径半高全宽(蓝)和旁瓣比(绿)沿光轴的分布,其中红色虚线和 黑色虚线分别表示衍射极限(0.5λ/NA)和超振荡判据(0.38λ/NA)

Fig. 3 The simulation results obtained with Comsol Multiphysics. (a) The optical intensity distribution on the focal plane; (b) The optical intensity distribution along the radial coordinate on the focal plane; (c) The peak intensity (red), full-width-at-half-maximum (blue) and sidelobe ratio (green) distribution along the optical axis, where the red-dotted line and the black-dotted line represent the diffraction-limit ($0.5\lambda/NA$) and the super-oscillation criterion ($0.38\lambda/NA$), respectively

径向范围内的光场强度分布,由图可知,在焦平面上, 随着离中心距离的增大,光强度快速减小。因此,在 中心区域以外不存在更大的旁瓣。图 3(c)为空心聚焦 光场峰值强度(红色实线)、内径半高全宽(蓝色实线)、 旁瓣比率(绿色实线)沿光轴的分布,其中红色虚线为 衍射极限(0.5λ/NA),黑色虚线为超振荡判据 (0.38λ/NA)。由图3(c)可知,在轴向z=198.6λ到z=201.3λ 范围内均存在空心聚焦光场,对应的焦深为 1023.9 nm(1.618λ);在此范围内,内径半高全宽在 0.308λ 到 0.346λ之间,均小于超振荡极限(0.398λ);在 z=126.5 μm(199.9λ)处,旁瓣比率达到最小值 17.5%。

4 实验结果分析

首先采用感应耦合等离子体增强化学气相沉积在 玻璃基底上生长 352 nm 的 Si₃N₄层,然后根据理论设 计结果,采用电子束曝光和感应耦合等离子体刻蚀形 成同心环结构,从而完成器件制作。图 4 为超振荡平 面聚焦透镜的扫描电镜照片。

为了测试超振荡聚焦平面透镜的聚焦性能,根据 横向光场的成像特性^[36],采用高数值孔径光学显微系 统,对所产生的角向偏振超振荡空心聚焦光场进行测 量。图 5 为相应的测量系统结构示意图,入射光源是 波长为 λ=632.8 nm 的 He-Ne 激光器(HNL210L, Thorlabs),光束经光隔离器(IO-2D-633-VLP, Thorlabs)和线 偏振片(WP25M-VIS, Thorlabs)后,由 S 波片 (RPC-632.8-06-188, Workshop of Photonics)产生所需的 角向偏振光^[37]。光束从基底一侧垂直照射超振荡聚焦 平面透镜,在焦平面上产生空心聚焦光场,对应的光 场光强分布通过光学显微镜系统获取。该光学显微系 统由高数值孔径显微物镜(CF Plan 100×/0.95, Nikon)、 纳米定位台(EO-s1047, Edmund Optics)、筒镜(ITL200, Thorlabs)和像元尺寸为 1.67 μm×1.67 μm CMOS 的相 机(acA3800-14 μm, Basler)组成,其中显微物镜安装在 纳米定位台上。通过控制纳米定位台的轴向移动,获 取位于不同位置 *z* 处的光场强度二维分布。

图 6(a)为在 z=200.89λ 处,垂直于光轴的平面内所 获取的二维光场强度分布,可以看出,焦平面内光场 分布呈明显的中空圆环形状,且中心圆环的强度远高 于外围圆环。然而,空心聚焦光场呈现出一定程度的 非对称分布,其主要原因可能是:实验中,透镜光轴 难以与角向偏振光光轴完全重合^[28]。图 6(b)为空心聚 焦光场沿着 X 轴和 Y 轴方向的强度分布,由图可知: 在这两个方向上,空心聚焦光场内径半高全宽分别为 0.337λ 和 0.434λ。由于空心聚焦光场并非完全对称, 为了对其尺寸进行更为客观的表征,分别在 10 个等间 隔角度(0°,18°,36°,54°,72°,90°,108°,126°,144°,

图 4 超振荡聚焦平面透镜扫描电镜照片 Fig. 4 SEM pictures of the super-oscillatory focusing planar lens

Fig. 5 The schematic diagram of the testing system for super-oscillatory focusing planar lens

162°)方向上,获取空心聚焦光场沿径向的强度分布曲线,并求取每个强度分布曲线的内径半高全宽。图 6(c) 为内径半高全宽随方向角度的变化关系,由此计算出 内径半高全宽的平均值为 0.368λ,该尺寸小于超振荡 判据(0.398λ)。

图 7(a)为在 XZ 传播平面内,沿光轴 $z=194\lambda$ 到 $z=206\lambda$ 范围,实验获取的二维光场强度分布,由图可 知,空心聚焦光场在 $z=198\lambda$ 到 $z=202\lambda$ 范围内均有分 布,焦深约为 2λ ;图 7(b)为对应的 Comsol Multiphysics 理论仿真结果。由两者的对比可知,实验结果与软件 仿真结果吻合较好。为了进行定量分析,在图 7(c)~ 图 7(e)中分别给出了归一化的聚焦光场峰值强度、内 径半高全宽(FWHM)和旁瓣比率(sidelobe ratio)等参数 沿光轴方向的分布曲线,其中蓝色实线为实验测量结 果,红色实线为仿真结果,红色虚线为衍射极限 $(0.5\lambda/NA)$,黑色虚线为超振荡判据 $(0.38\lambda/NA)$ 。由图 7(c)可知,实验结果和理论光场强度均主要分布在 z=198λ 到 z=202λ 范围内,理论焦深为 1024 nm(1.618λ), 而实验测量焦深为 1496 nm(2.364λ)。从 图 7(d)可以看出,在 z=198.4λ 到 z=201.4λ 范围内,内 径半高全宽理论值均小于超振荡判据(0.398λ),且均小 于实验测量结果;实验测得的内径半高全宽,在 z=198.4λ 到 z=201.4λ 范围内小于衍射极限,其最小值 为 0.352λ ,最大值为 0.521λ ;在 $z=200.8\lambda$ 到 $z=201.4\lambda$ 范围内,内径半高全宽的最大值为 0.388\,,小于超振 荡判据(0.398λ)。图 7(e)为旁瓣比率的理论和实验结果 对比,在给出的 z=198λ 到 z=202λ 范围内,实验结果 均小于理论仿真结果。在内径半高全宽小于衍射极限 的区域内,实验得到的旁瓣比率取值范围为 16.1%~74.3%;在超振荡区域内,实验测量的旁瓣比率 取值范围为 33.1%~74.3%。与 Comsol Multiphysics 仿 真结果对比,实验测量所得到的内径半高全宽和旁瓣

图 6 超振荡聚焦平面透镜测试结果。(a) 位于 z=200.89 λ 处的焦平面二维光场强度分布图; (b) 光场沿 x 轴方向(蓝色曲线)和 y 轴方向(红色曲线)的强度分布曲线; (c) 在不同角度方向上的空心聚焦光场内径半高全宽。其中黑色虚线、红色虚线、蓝色点划线分别为衍射极限、超振荡判据和平均半高宽

Fig. 6 The experimental results of the super-oscillatory planar lens. (a) The 2-dimensional intensity distribution on the focal plane at $z=200.89\lambda$; (b) the intensity distribution along the *x*-axis (blue curve) and *y*-axis (red curve), respectively, on the focal plane; (c) The values of the hollow spot FWHM in different direction, where the black-dashed line, red-dashed line and blue dash-dot line are the diffraction-limit, super-oscillation criterion and average FWHM

图 7 实验结果与理论结果的对比。在传播平面上, z=194λ至 z=206λ范围内,分别由(a)实验测量和(b) Comsol Multiphysics 仿真获得的光场强度分布,以及相应的(c)光场峰值强度、(d)内径半高全宽和(e)旁瓣 比等参数沿光轴的理论(红色实线)和实验(蓝色实线)分布曲线对比,其中黑色虚线和红色虚线分别表示衍射极 限(0.5λ/NA)和超振荡判据(0.38λ/NA)

Fig. 7 The comparison between experimental and theoretical results. In the propagation plane, the optical intensity distribution between $z=194\lambda$ and $z=206\lambda$ obtained by (a) experiment and (b) Comsol Multiphysics simulation, respectively. The corresponding distributions of (c) peak intensity, (d) inner full-width-at-half-maximum and (e) sidelobe ratio obtained by (a) Comsol Multiphysics simulation (red-solid) and experiment (blue-solid), where the black-dotted line and the red-dotted line indicate the diffraction-limit ($0.5\lambda/NA$) and super-oscillation criterion ($0.38\lambda/NA$), respectively

比率均有一定差异,其原因主要是:1) 实验中透镜光 轴与入射角向偏振光光轴未能较好地同轴,导致焦平 面内光场强度分布的畸变;2) 实验采用的显微系统数 值孔径为 0.95,其对光场具有一定的低通滤波效应; 3) 透镜加工中的结构参数和材料参数误差;4) 所采 用的 S 玻片产生的角向偏振光场,并不是理想的对称 分布。

5 结 论

综上所述,本文面向超衍射空心光环的产生,提 出了一种基于二值振幅调控的角向偏振光超振荡聚焦 平面透镜,并基于矢量角谱衍射公式和粒子群最优化 算法,针对波长为 632.8 nm 的角向偏振光,设计了长 焦距(200λ)、大数值孔径(*NA*=0.958)的超振荡聚焦平面 透镜。实验结果表明:该透镜可以实现角向偏振光的 超振荡聚焦,空心聚焦光场平均半高全宽为 0.368λ, 小于超振荡判据(0.38λ/*NA*)。通过与数值仿真结果对 比,发现实测结果和理论结果具有较好的一致性。实 验结果中出现的光场分布非对称性,主要是光路调节 过程中透镜光轴难与入射光光轴完全重合造成的,这 一问题可以通过在同一器件上集成偏振转换和聚焦功 能解决。同时,焦斑尺寸可以通过增大透镜数值孔径 或提高旁瓣比率进一步减小。该透镜具有尺寸小、质 量轻和便于集成等特点,可应用于受激发射损耗显微 (stimulated emission depletion microscopy, STED)、光 镊、纳米光刻以及超高密度数据存储等领域。该器件 的不足是只能工作在单一波长。因此,实现宽带和消 色差将是超振荡聚焦透镜今后发展的重要方向。同时, 如何解决空间分辨力与旁瓣之间的矛盾,也是超振荡 器件需要进一步研究解决的问题。而且,目前报道的 超振荡器件主要还是以聚焦器件为主,对于超振荡成 像器件的研究也亟待深入开展。

参考文献

- Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153–1158.
- [2] Moneron G, Hell S W. Two-photon Excitation STED Microscopy[J]. Optics Express, 2009, 17(17): 14567–14573.
- [3] Zhang D W, Yuan X C. Optical doughnut for optical tweezers[J]. Optics Letters, 2003, 28(9): 740–742.
- [4] Porfirev A P, Skidanov R V. Dark-hollow optical beams with a controllable shape for optical trapping in air[J]. *Optics Express*, 2015, **23**(7): 8373–8382.
- [5] Gan Z S, Cao Y Y, Evans R A, *et al.* Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. *Nature Communications*, 2013, **4**: 2061.
- [6] Hao X, Kuang C F, Wang T T, et al. Phase encoding for sharper focus of the azimuthally polarized beam[J]. Optics Letters, 2010, 35(23): 3928–3930.
- [7] Yuan G H, Wei S B, Yuan X C. Nondiffracting transversally polarized beam[J]. Optics Letters, 2011, 36(17): 3479–3481.
- [8] Hao X, Kuang C F, Li Y H, et al. Manipulation of doughnut focal spot by image inverting interferometry[J]. Optics Letters, 2012, 37(5): 821–823.
- [9] Tian B, Pu J X. Tight focusing of a double-ring-shaped, azimuthally polarized beam[J]. Optics Letters, 2011, 36(11): 2014–2016.
- [10] Lalithambigai K, Suresh P, Ravi V, et al. Generation of subwavelength super-long dark channel using high Na lens axicon[J]. Optics Letters, 2012, 37(6): 999–1001.
- [11] Chen W G, Wang J, Zhao Z Y, et al. Large scale manipulation of the dark spot by phase modulation of azimuthally polarized light[J]. Optics Communications, 2015, 349: 125–131.
- [12] Khonina S N, Golub I. Enlightening darkness to diffraction limit and beyond: Comparison and optimization of different polarizations for dark spot generation[J]. *Journal of the Optical Society* of America A, 2012, 29(7): 1470–1474.
- [13] Berry M V, Popescu S. Evolution of quantum superoscillations, and optical superresolution without evanescent waves[J]. *Journal of Physics A*, 2006, **39**(22): 6965–6977.
- [14] Rogers E T F, Zheludev N I. Optical super-oscillations: Sub-wavelength light focusing and super-resolution Imaging[J]. *Journal of Optics*, 2013, **15**(9): 094008.
- [15] Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249–1254.
- [16] Rogers E T F, Lindberg J, Roy T, *et al.* A Super-oscillatory lens optical microscope for subwavelength imaging[J]. *Nature Materials*, 2012, **11**(5): 432–435.
- [17] Rogers E T F, Savo S, Lindberg J, *et al.* Super-oscillatory optical needle[J]. *Applied Physics Letters*, 2013, **102**(3): 031108.
- [18] Kotlyar V V, Stafeev S S, Liu Y K, *et al.* Analysis of the shape of a subwavelength focal spot for the linearly polarized light[J]. *Applied Optics*, 2013, **52**(3): 330–339.

- [19] Liu T, Tan J B, Liu J, et al. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13): 15090–15101.
- [20] Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18): 22163–22171.
- [21] Liu T, Shen T, Yang S M, et al. Subwavelength focusing by binary multi-annular plates: Design theory and experiment[J]. *Journal of Optics*, 2015, **17**(3): 035610.
- [22] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.
- [23] Qin F, Huang K, Wu J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977.
- [24] Chen G, Zhang K, Yu A P, et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Optics Express, 2016, 24(10): 11002–11008.
- [25] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859.
- [26] Diao J S, Yuan W Z, Yu Y T, *et al.* Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. *Optics Express*, 2016, **24**(3): 1924–1933.
- [27] Luo J, Zhao Z Y, Pu M B, et al. Tight focusing of radially and azimuthally polarized light with plasmonic metalens[J]. Optics Communications, 2015, 356: 445–450.
- [28] Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. *Scientific Reports*, 2016, 6: 37776.
- [29] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7: 4697.
- [30] Zhang S, Chen H, Wu Z X, et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Optics Express, 2017, 25(22): 27104–27118.
- [31] Chen G, Li Y Y, Wang X Y, et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photonics Technology Letters, 2016, 28(3): 335–338.
- [32] Chen G, Wen Z Q, Wu Z X. Optical super-oscillation and super-oscillatory optical devices[J]. Acta Physica Sinica, 2017, 66(14): 56-75.
 陈刚, 溫中泉, 武志翔. 光学超振荡与超振荡光学器件[J]. 物理 学报, 2017, 66(14): 56-75.
- [33] Youngworth K, Brown T. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77–87.
- [34] Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations[J]. *IEEE Transactions on Antennas and Propagation*, 2007, 55(3): 556–567.
- [35] Huang K, Ye H P, Teng J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152–157.
- [36] Liu T, Yang S M, Jiang Z D, et al. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Optics Express, 2016, 24(15): 16297–16308.
- [37] Beresna M, Gecevičius M, Kazansky P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[Invited][J]. Optical Materials Express, 2011, 1(4): 783–795.

Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave

Wu Zhixiang^{1,2}, Jin Qijian^{1,2}, Zhang Kun^{1,2}, Zhang Zhihai^{1,2}, Liang Gaofeng^{1,2},

Wen Zhongquan^{1,2}, Yu Anping^{1,2}, Chen Gang^{1,2*}

¹College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; ²Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China

The measured intensity distribution of the dark spot on the focal plane

Overview: The generation of optical dark spots is attractive for various applications, such as optical microscopy, optical tweezers and nanolithography. Due to its unique focusing properties, azimuthally polarized wave is used to generate tight focused dark spot with conventional optics. However, high numerical optical lenses are bulky and expensive, and more importantly, the conventional optics are diffraction-limited. In recent years, there has been growing interest in developing planar lenses with small size, thin thickness and light weight. To further reduce the focusing spot size, the idea of super-oscillation was proposed to overcome this restriction. In addition, super-oscillation optical fields consist of only propagating waves and can generate sub-diffraction optical features in far field. Although, super-oscillatory dark spot has been demonstrated by focusing azimuthally polarized wave with a binary-phase $(0, \pi)$ lens, it requires comparatively high precision in the growth of the dielectric layer with proper thickness to ensure the correct phase delay. In this paper, a binary-amplitude (0, 1) super-oscillatory planar lens is proposed for the focusing of azimuthally polarized wave and generation of optical dark spots with super-oscillatory size. Utilizing vectoral-angular-spectrum method and particle-swarm algorithms, a planar lens was designed with a radius of 650λ and focal length of 200λ for azimuthally polarized wave at wavelength of 632.8 nm. The corresponding numerical aperture is 0.96. In the experiment, a test system based on high-numerical-aperture microscope was used to obtain the 2-dimentinal optical intensity distribution. With a nano-positioner, the objective lens can scan the 2-dimentinal optical intensity distribution at different position along the optical axis. The experimental results demonstrate the generation of a hollow spot with circular ring shape on the focal plane. The inner full-width-at-half-maximum of the hollow spot is 0.368 λ , smaller than the super-oscillatory criterion (0.398 λ), and the maximum sidelobe ratio is about 36.7%. Such planar lenses are easy to fabricate. Their small size and ultra-thin thickness make them promising in system minimization and integration for different applications, such as optical microscopy, optical trapping and ultra-high density data storage.

Citation: Wu Z X, Jin Q J, Zhang K, *et al.* Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. *Opto-Electronic Engineering*, 2018, **45**(4): 170660

Supported by National Key Basic Research and Development Program of China (Program 973) (2013CBA01700) and China National Natural Science Foundation of China (61575031, 61177093)

^{*} E-mail: gchen1@cqu.edu.cn