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Knot-inspired optical sensors for slip detection
and friction measurement in dexterous robotic
manipulation
Jing Pan1, Qi Wang1, Shuaikang Gao1, Zhang Zhang1, Yu Xie1,
Longteng Yu1* and Lei Zhang1,2*

Friction  plays  a  critical  role  in  dexterous  robotic  manipulation.  However,  realizing  friction  sensing  remains  a  challenge
due to the difficulty in designing sensing structures to decouple multi-axial forces. Inspired by the topological mechanics
of knots, we construct optical fiber knot (OFN) sensors for slip detection and friction measurement. By introducing local-
ized self-contacts along the fiber, the knot structure enables anisotropic responses to normal and frictional forces. By em-
ploying OFNs and a change point  detection algorithm, we demonstrate adaptive robotic  grasping of  slipping cups.  We
further  develop  a  robotic  finger  that  can  measure  tri-axial  forces  via  a  centrosymmetric  architecture  composed  of  five
OFNs.  Such  a  tactile  finger  allows  a  robotic  hand  to  manipulate  human  tools  dexterously.  This  work  could  provide  a
straightforward and cost-effective strategy for promoting adaptive grasping, dexterous manipulation, and human-robot in-
teraction with tactile sensing.
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 Introduction
Human  hands  can  precisely  perceive  friction  through
mechanical  receptors  in  the  skin,  which  enables  us  to
perform  sophisticated  tasks  such  as  adaptive  grasping,
folding,  twisting,  etc.1 Similarly, artificial  tactile  percep-
tion,  especially  friction measurement and slip detection,
plays  a  vital  role  in  dexterous  robotic  manipulation2−4.
Over  the  last  decade,  soft  and  flexible  tactile  sensors
based on electrical5−12, magnetic13−15, and optical16−20 prin-
ciples  have  been  developed  for  robotic  applications21−23.
Among  them,  sensors  based  on  optical  waveguides24−29

have  attracted  particular  interest  due  to  their  excellent

flexibility30,31,  high  sensitivity32,  multi-modality33,34,  and
distributed sensing capability35,36,  as  well  as  anti-electro-
magnetic interference  and  corrosion-resistance  charac-
teristics37.  Several  attempts  have  been  made  to  improve
robotic manipulation  using  optical  waveguides.  For  ex-
ample,  Leal  et  al.  report  a  bioinspired  multifunctional
flexible  optical  sensor  (BioMFOS)  as  an  ultrasensitive
tool  for  force  (intensity  and  location)  and  orientation
sensing27.  Li  et  al.  embedded  a  silica  microfiber  probe-
based optical  neuron  into  thin  PDMS  to  detect  and  re-
cognize the motions of a robotic finger38.

To provide informative state feedback during grasping, 
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Teeple  et  al.  incorporated  optical  waveguides  in  a  soft
gripper for proprioception and contact force sensing for
deep-sea  grasping31. This  approach,  however,  was  lim-
ited  to  normal  force  measurement  since  lossy  optical
waveguides with  axisymmetric  cross-sections  are  gener-
ally insensitive to tangential perturbations. To overcome
this  limitation,  we  attached  fingerprint-like  ridges  to  an
optical  microfiber  sensor  in  our  previous  work39.  The
ridges  enhanced  friction-induced  vibration,  which  was
perceived by the optical fiber underneath. Although slip
was successfully  detected  with  high  sensitivity,  the  de-
coupling between normal and frictional forces remained
to be resolved.

In  fact,  the  prerequisite  for  friction  measurement  lies
in the  anisotropic  structure  or  material  of  a  sensor.  Re-
cently,  Zhou  et  al.  encapsulated  a  pair  of  soft  optical
waveguides  in  an  elastomeric  slab  with  a  crossed-over
layout40. Each  waveguide  exhibited  anisotropic  re-
sponses to  tri-axial  forces.  Through  a  decoupling  al-
gorithm  based  on  multiple  linear  fitting,  the  optical
sensor could  measure  normal  and  frictional  forces,  re-
spectively. Nevertheless, the 3 mm-thick optical skin was
inconvenient  to  incorporate  into  the  robotic  hand.  As
such, it is desirable to construct highly integrated robot-
ic tactile sensors based on optical waveguides for friction
measurement.

Inspired  by  the  topological  mechanics  of  knots41,  we
propose  a  cost-effective  strategy  for  friction  sensing
based  on  optical  fiber  knots  (OFN)  in  this  work.  The
knot structure alters the load distribution along the fiber,
making  a  single  polymer  fiber  sensitive  to  both  normal
and frictional forces. The OFN sensor achieved a maxim-
um sensitivity of 2.67 N–1 for normal force detection and
5.59  N–1 for  frictional  force  detection,  respectively.  By
fixing OFN  sensors  onto  the  finger  pads,  we  demon-
strated  that  a  robotic  gripper  could  adaptively  grasp  a
cup based  on  slip  feedback  using  a  change  point  detec-
tion algorithm42. We further devised a robotic tactile fin-
ger  that  can  measure  tri-axial  forces  via  a  self-decoup-
ling  approach.  Five  OFN  sensors  were  arranged  in  a
centrosymmetric  layout  inside  the  finger  to  measure
forces  from  various  directions  independently.  Equipped
with the tactile finger, a robotic gripper achieved dexter-
ous  manipulation  of  human tools  such  as  a  knife  and  a
key.

Our OFN-based  sensing  strategy  could  be  a  straight-
forward and cost-effective solution for tactile perception-
assisted dexterous  robotic  manipulation.  By  incorporat-

ing these sensors, we have achieved high sensitivity, flex-
ibility,  and  scalability,  enabling  robots  to  interact  more
efficiently  with  their  environment.  This  technology  has
diverse applications  in  industrial  automation,  prosthet-
ics, and healthcare robotics.

 Results and discussion

 An optical fiber knot with force sensing capability
Knots  demonstrate  intriguing  mechanical  properties
arising from their  topological  structure41.  The entangled
architecture facilitates  interaction between different sec-
tions  along  a  fiber,  which  is  beneficial  to  enhancing  the
sensitivity  of  fiber  sensors43,  fabricating  smart  fabrics44,
and  assembling  optical  resonators45. Inspired  by  the  to-
pological  mechanics  of  knots,  we  fabricated  a  compact
tactile sensor by encapsulating an OFN in polydimethyl-
siloxane  (PDMS)  (Fig. 1(a)).  Polymer  optical  fiber
(PMMA) has been selected for fabricating the fiber knot
due  to  its  relatively  high  mechanical  strength  (Young's
modulus of  3 to 4 GPa) and the ease of  knotting opera-
tion. While  microfiber  could  also  be  utilized  in  con-
structing knot structures, their intricate knotting process
and  limited  dynamic  range  make  them  challenging  to
meet the  demands  for  robotic  tactile  sensing  applica-
tions.  The  PDMS  encapsulation  not  only  maintains  the
knot structure but also enhances the mechanical damage
threshold  of  the  sensor  (Fig.  S1).  However,  the  OFN
sensor faces  limitations  in  terms  of  heat  insulation  cap-
ability  due  to  the  properties  of  PDMS  and  the  thermal
stability of PMMA. As a result, this combination may not
be able  to  withstand  high  ambient  temperatures  effect-
ively.  It  is  suggested  to  maintain  the  temperature  below
60 °C (Fig. S2). A light emitting diode (LED) and a pho-
todetector (PD) were coupled with the fiber ends to op-
erate  as  the  light  source  and  the  receiver,  respectively
(Fig.  S3).  To ensure  consistency in  size,  we fastened the
PMMA fiber knot around a polymer cylinder mold (see
Figs. S4 and S5). A sensing array with multiple identical
OFNs  can  be  readily  fabricated  using  the  mold  (Fig.
1(b)).  The  pressure  response  of  each  individual  OFN in
the  array  is  illustrated  in Fig.  S6,  which  exhibits  decent
consistency across the OFNs, ensuring reliable and con-
sistent pressure sensing performance.

To  explore  the  effect  of  force,  we  poked  the  sensor
with  a  plastic  rod  and  observed  the  light  intensity  from
the output end (Fig. 1(c–e)). The fundamental operating
mechanism  of  the  OFN  sensor  is  based  on  the  micro-
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bending loss46 at the points where the fiber overlaps with
itself. When  a  normal  force  or  a  frictional  force  is  ap-
plied  to  the  knot,  the  fiber  squeezes  against  itself  at  the
points  of  overlap,  intensifying  the  bending  loss,  thereby
decreasing the output intensity of the sensor. This effect
is  illustrated  by  the  ray  diagrams  shown  in Fig.  S7.  To
understand the  working  mechanism,  we  carried  out  fi-
nite  element  simulations,  where  an  OFN  embedded
PDMS slab was subjected to normal and frictional forces
(Fig. 1(f–h)).  Both  forces  were  evenly  distributed  over
the top surface of the slab. For clarity, the slab is hidden
in the figures and only the undeformed state is outlined.
When  the  normal  force  was  applied,  the  knot  became
more  compressed  with  strain  concentrated  near  the
crossings (Fig. 1(g)). As the frictional force was then su-
perimposed,  the  knot  deformed sideways  and the  strain
increased significantly, especially within the segment be-
ing  pushed  away  (Fig. 1(h)).  These  elastic  deformations
induced  localized  micro-bends  at  the  crossings,  which
caused the transmitted mode to exceed the critical angle.

Consequently,  the  transmitted  light  was  refracted  into
the cladding and lost from the fiber. In other words, the
knotted  structure  introduced  self-contacts  at  multiple
locations  along  the  fiber,  making  the  fiber  sensitive  to
forces  from  various  directions.  Being  sensitive  to  both
normal and  frictional  forces,  the  OFN  can  be  a  prom-
ising  candidate  for  slip  detection  and  tri-axial  force
measurement in robotic manipulation.

 Characterization of normal and frictional forces
measurement
Next,  we  investigated  the  sensing  characteristics  of  the
OFN sensor for measuring normal and frictional forces.
OFNs  with  different  knot  diameters  (4.5  mm,  3.5  mm,
and 2.5 mm) were separately embedded in square PDMS
slabs  (side  lengths  of  5  mm  and  thicknesses  of  1  mm).
Here, the knot diameter is defined as the diameter of the
inscribed circle of the knot. For clarity, we refer to these
slab-encapsulated  OFNs  as  “flat  OFN  sensors ”. Figure
2(a) illustrates  the  force  testing  platform  in  which  the
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Fig. 1 | Overview of the OFN sensor. (a) Schematic diagram of the OFN sensing system. (b) 5 by 5 OFN sensing array. (c) Photographs of the

output light when the sensor was untouched, (d) subjected to normal force, and (e) subjected to both normal and frictional force. (f) Finite ele-

ment simulations of strain distribution when the OFN sensor (knot diameter: 3.5 mm, side length: 5 mm, thickness: 1 mm) was untouched, (g)

subjected to a 10 N normal force, and (h) subjected to a 10 N normal force and an additional 4 N frictional force, respectively.
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testing probe is driven by a tri-axial motorized stage, and
the  applied  force  is  recorded  via  a  multi-axis  force
sensor.  As Fig. 2(b) shows,  a  sensor  with  a  smaller  knot
diameter responded more drastically to the normal force,
since  a  smaller  knot  may  cause  severer  micro-bending.
Specifically, the sensitivity of the 2.5 mm knot to normal
force was calculated to be 2.67 N–1, which is much higher
than that of the 4.5 mm knot with a sensitivity of 0.45 N–1.

We then tested the response of a 2.5 mm knot to static
frictional  forces.  The maximum frictional  force that  can
be  applied  on  the  sensor  is  proportional  to  the  normal
force between the testing probe and the sensor. The sens-
itivity to frictional force was relatively unaffected by the
pre-loaded normal force (Fig. 2(c)),  which was 2.07 N–1,
4.24  N–1,  6.36  N–1,  and  5.59  N–1 under pre-loaded  nor-
mal forces of 2.5 N, 5 N, 7.5 N, and 10 N, respectively. In
addition, the sensing range broadened from 0–1 N to 0–4
N when the normal force increased from 2.5 N to 10 N.
These results  are  in  consistent  with  the  Coulomb  fric-
tion model  (the  maximum  friction  is  linearly  propor-
tional  to  the  normal  force)  and  denote  a  coefficient  of
friction of 0.4 between the sensor and the probe.

The responsiveness  of  the  flat  OFN  sensor  was  ex-
amined  afterward.  A  step  force  in  either  the  normal  or
tangential  direction  was  exerted  on  the  sensor  before  a
sudden release (Fig. 2(d)). Both response time and recov-
ery time  were  measured  to  be  50  ms,  which  was  prob-

ably limited by the elastomeric encapsulation. Neverthe-
less,  this  encapsulation  protected  the  OFN  and  thereby
boosted  the  robustness  of  the  sensor.  To  prove  this,  we
applied  a  5  N  normal  force  and  a  1  N  frictional  force
(pre-loaded normal force: 0.4 N) on the sensor for more
than 1500 times (Fig. 2(e) and Fig. 2(f)). The smooth en-
velopes of the time series data verified the good stability
and robustness of the sensor.

 Adaptive grasping based on slip detection
The friction sensing capability  of  the  flat  OFN sensor  is
conducive to  adaptive  robotic  grasping.  First,  we  con-
structed a slip detection system comprising two flat OFN
sensors and a slip detection program named Slip Finder.
Based on a  change point  detection algorithm36, the  pro-
gram detects  slip-induced perturbations in the signal  by
giving  a  Slip  Score  (1:  a  slip  occurs,  0:  no  slips)  in  real
time.

As shown in Fig. 3(a), we commanded a two-fingered
robotic  gripper  to  grasp  a  plastic  cup  that  would  slip
downward  if  weights  were  added  into  it.  Two  flat  OFN
sensors were fixed to one finger pad of the gripper (Fig.
S8),  such  that  both  translational  slip  and  rotational  slip
could  be  detected.  By  dropping  screws  into  the  cup,  we
created  a  slipping  tendency  for  the  cup,  increasing  the
frictional  force  on  the  sensors. Figure 3(b) presents  the
sensing signals  of  the  whole  process.  Initially,  the  signal
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of 2.5 mm when pre-loaded with 0 N, 2.5 N, 5 N, 7.5 N and 10 N normal forces. (d) Intensity signals of the OFN sensor loaded/unloaded with nor-
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remained stable when the cup was grasped firmly. When
a  screw  was  dropped  into  the  cup,  the  grip  strength  of
the robotic gripper was insufficient to hold the cup, res-
ulting in a downward slip (see Supplementary Movie S2).
Instantly,  both  OFN  sensors  captured  the  perturbation
caused by the slip,  which appeared as spikes in the real-
time  signal  (yellow  columns  in Fig. 3(b)).  Slip  Finder
promptly  generated  a  Slip  Score  of  “1 ”  (Fig. 3(c)),  and
subsequently, the  robotic  gripper  closed  further  to  sup-
press slipping (Fig. 3(d)). Here, the closing degree is rep-
resented  by  the  Finger  Position,  a  built-in  parameter  of
the robotic gripper, with 0 indicating fully open and 255
indicating  fully  closed.  As  the  robotic  gripper  closed
more, the pressure on the fingers increased, and the light
intensities decreased (red columns in Fig. 3(b)). Since the
grip  strength  had  been  intensified,  the  cup  only  tilted
slightly when  the  second  screw  was  released  at  approx-
imately 8.5  s,  leading  to  a  local  rotational  slip.  Con-
sequently,  only one sensor responded (Fig. 3(c)),  yet the
robotic  gripper  still  reacted swiftly  (Fig. 3(d)).  Although
three  more  screws  were  dropped  into  the  cup  later,  the
cup did not slip out from the gripper.

In contrast, when we cut the feedback from Slip Find-
er,  the  robotic  gripper  failed  to  prevent  the  cup  from
dropping (Fig. 3(e) and Movie S3). As Fig. 3(f, g) shows,
when the first two screws dropped into the cup, two slips
were accurately  identified.  However,  the robotic  gripper
took no action (Fig. 3(h)) due to the lack of  closed-loop
grasping control.  After the third screw was released,  the

cup  slanted  and  detached  from the  sensors,  resulting  in
an invalid slip detection. Finally, the fourth screw caused
the cup to drop. These two experiments suggest that our
slip detection  system  can  effectively  assist  adaptive  ro-
botic grasping.

 Characterization of tri-axial force sensing
It  is  clear  that  the  OFN  holds  promise  in  tri-axial  force
sensing,  but  the  normal  and  frictional  forces  were
coupled together in our initial study presented above. To
tackle  this  problem,  we  fabricated  a  ‘cubic  OFN sensor’
by placing an OFN at the midplane of a PDMS cube. As
such, orthogonal forces (denoted as Fx, Fy, and Fz) could
be separately applied on the front, side, and top surfaces
of the cubic OFN sensor (Fig. 4).

To  investigate  the  characteristics  of  tri-axial  force
sensing, we compressed the cubic OFN sensor on differ-
ent surfaces by adjusting its orientation (Fig. 4(a)). Three
sizes of  cubic  OFN  sensors  were  tested,  with  knot  dia-
meters of 4.5 mm, 3.5 mm, and 2.5 mm and side lengths
of  5  mm,  4  mm,  and  3  mm,  respectively.  As  shown  in
Fig. 4(b–d), all  three sensors were sensitive to Fy and Fz,
whereas their responses to Fx were weak. Since the knot
was covered with a thick layer of PDMS in the Fx direc-
tion,  its  deformation  due  to Fx was  much  slighter  than
that caused by Fy and Fz. Additionally, similar to the flat
OFN sensors,  cubic OFN sensors with smaller knot dia-
meters  demonstrated  higher  sensitivities  in  both Fy and
Fz.  For  example,  the  sensitivity  of  the  2.5  mm  knot
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reached  125.21  MPa–1 in  the Fz direction, which  is  re-
markably  higher  than  the  50.52  MPa–1 sensitivity  of  the
4.5  mm knot.  Although the  sensitivity  can  be  improved
by  reducing  the  knot  diameter,  the  detection  range  will
inevitably  become  narrower  as  there  is  a  bending  limit
for  the  fiber.  Moreover,  forcefully  tightening  the  knot
could  potentially  cause  plastic  deformation  of  the  fiber,
thereby compromising the consistency and sensitivity of
the  sensor  (Fig.  S9).  Considering  the  trade-off  between
sensitivity and detection range, the 3.5 mm knot was se-
lected for the following experiments.

 Dexterous manipulation based on tri-axial force
sensing
The  tri-axial  forces  at  the  fingertips  provide  the  robot
with  rich  information  about  the  motion  state  of  the
grasped object.  By monitoring tri-axial  forces,  the  robot
can sense critical moments during manipulation and re-
act accordingly. To this end, we devised a robotic tactile
finger  that  can  measure  tri-axial  forces  with  a  group  of
cubic  OFN  sensors  (Fig. 5(a)).  As  illustrated  in Fig. 5(b,
c), five cubic OFN sensors are arranged in a centrosym-
metric layout,  such that sensors No. 1 to No. 5 measure
–Fx, –Fy,  +Fx,  +Fy,  and Fz,  respectively.  The  tails  of  all
knots extend downwards to facilitate wire collection and
sensor installation. When the black contact plate is  sub-
jected to an external force,  the compressive force is  first

applied  to  sensor  No.  5  in  the  blue  slider  through  the
square column. The frictional force then drives the blue
slider  to  move  sideways  and  compress  sensors  No.  1  to
No. 4 through the yellow cylinders. In line with the char-
acteristics  shown  in Fig. 4,  sensors  No.  1  to  No.  4  are
compressed from their local y directions, and sensor No.
5 is compressed from its local z direction. In this way, the
external force is mechanically decomposed into separate
components,  which  can  be  measured  independently  by
the  five  sensors,  realizing  a  self-decoupling  approach  to
tri-axial force sensing.

We  fabricated  a  pair  of  the  tactile  fingers  (Fig. 5(d))
and integrated them into a robotic gripper. Experiments
imitating human  operations  were  then  carried  out,  in-
cluding cutting tofu with a  knife  (Fig. 5(e)) and unlock-
ing a  locker with a  key (Fig. 5(f)). In the cutting experi-
ment, the robot gripped a knife and cut tofu three times
(Movie  S4). The  friction  between  the  knife  and  the  fin-
gers  was monitored to determine whether the knife  was
cutting the tofu or touching the cutting board. When the
blade touched the tofu, the upward resistance induced a
slight  increase  of Fy. Since  the  tofu  was  soft  and  homo-
genous,  the  force  in  all  three  directions  remained stable
during the cutting process (see the blue columns in Fig.
5(e)). As the knife continued to move downward, it was
eventually blocked by the cutting board. Instantaneously,
Fy soared above a safety threshold, triggering the robot to
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retract  the  knife  (see  the  red  columns  in Fig. 5(e)).  We
also noticed jumps in the signal of Fz, which were prob-
ably due to the tilt of the knife when the blade contacted
the cutting board.

Next,  we  commanded  the  robot  to  unlock  a  locker
with a key (Fig. 5(f) and Movie S5). To determine wheth-
er the key was fully inserted, we monitored the horizont-
al  frictional  force  (Fx)  between  the  key  and  the  fingers.
The  force  signals  demonstrated  that  once  the  key  was
completely inserted into the keyhole, Fx changed rapidly
from  nearly  zero  to  below –2  N.  Thereafter,  the  robot
turned the key 90° and pulled it  to open the locker,  res-
ulting in an increase in Fx in the opposite direction. An-
other friction component Fy and the grip force Fz varied
accordingly  during  the  unlocking  process.  Since Fx was
more  straightforward  to  understand  in  this  experiment,
we regarded it  as  the key variable  in the robotic  control
program.

 Conclusions
In this article, we reported a straightforward and cost-ef-
fective  strategy  for  developing  tactile  sensors  based  on
OFNs.  The  tangled  structure  of  the  knot  alters  the  load
distribution along the fiber,  enabling the OFN sensor to
detect slip and measure friction in dexterous robotic ma-
nipulation.  To  detect  slip  during  adaptive  grasping,  we
fixed flat  OFN  sensors  onto  a  robotic  finger,  and  pro-

cessed the vibrating signal with a customized slip detec-
tion algorithm.  To measure  tri-axial  forces  in  dexterous
manipulation, we devised a highly integrated robotic fin-
ger  enclosing  multiple  cubic  OFN  sensors,  with  each
sensor detecting forces from various directions. For clar-
ity, we itemize the contributions of this work as follows:
1) We introduced the knotted structure and investigated
its  sensing  capabilities  to  both  normal  and  frictional
forces.  2)  We  demonstrated  an  application  of  the  fiber
knot sensor and validated its potential for tactile sensing
in robotics.

Although  OFN  sensors  prove  to  be  valuable  for  slip
and friction measurement, this approach has several lim-
itations. One  of  the  main  challenges  is  that  OFN  is  un-
able to  withstand  high  temperatures  owing  to  the  lim-
ited  thermal  stability  of  long-chain  polymers.  PMMA,
for example, has a glass transition temperature of 100 °C
and  begins  to  soften  at  about  90  °C.  Working  at  high
temperatures results in irreversible damage to the sensor.
However,  by employing optical  fibers made of materials
like PC (polycarbonate) with higher softening temperat-
ures, the sensor can function within an extended range of
temperature.

Lastly,  it  is  possible  to  weave  a  compliant  tactile  web
composed  of  multiple  optical  fibers  to  cover  complex
curved surfaces, such as the fingertips, palms, arm joints,
and feet of a robot. This flexible web can provide distrib-
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uted  pressure  and  friction  information  over  the  robot,
which might be helpful for dexterous manipulation, hu-
man-machine  interaction,  and  biped  locomotion  in  the
future.
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