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Recent advances in optical dynamic meta-
holography
Hui Gao1†, Xuhao Fan1†, Wei Xiong1* and Minghui Hong2

Holography, with the capability of recording and reconstructing wavefronts of light, has emerged as an ideal approach for
future deep-immersive naked-eye display. However, the shortcomings (e.g., small field of view, twin imaging, multiple or-
ders  of  diffraction)  of  traditional  dynamic  holographic  devices  bring  many  challenges  to  their  practical  applications.
Metasurfaces, planar artificial materials composed of subwavelength unit cells, have shown great potential in light field
manipulation, which is useful for overcoming these drawbacks. Here, we review recent progress in the field of dynamic
metasurface holography,  from realization methods to design strategies,  mainly  including typical  research works on dy-
namic meta-holography based on tunable metasurfaces and multiplexed metasurfaces. Emerging applications of dynam-
ic meta-holography  have  been  found  in  3D  display,  optical  storage,  optical  encryption,  and  optical  information  pro-
cessing, which may accelerate the development of light field manipulation and micro/nanofabrication with higher dimen-
sions. A number of potential applications and possible development paths are also discussed at the end.
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Introduction
In  science  fiction  movies  (e.g.,  Star  Wars),  naked-eye
three-dimensional  (3D)  display  scenes  are  so  fantastic
that they  have  attracted  much  attention  to  develop  re-
lated  technologies.  Via  recording  and  reconstructing
wavefronts of light, holography is an ideal technology to
achieve naked-eye 3D display as well as many optical ap-
plications,  including  optical  storage1,2, optical  encryp-
tion3, optical information processing4 and optical manip-
ulation5,6. Holography technology would provide a won-
derful  naked-eye  display  platform  to  greatly  enhance
visual immersion and reality, change the methods of hu-
man-computer interaction  and  human-human  commu-
nication,  and  revolutionize  our  daily  lives.  Traditional

optical holography requires a complicated shooting pro-
cess  to  record  the  interference  pattern  of  light  beams
from target objects and a reference path7. Therefore, tra-
ditional  optical  holography  cannot  create  a  holographic
reconstruction  of  a  virtual  object.  In  1966,  computer-
generated  holography  (CGH)  was  invented  by  Brown
and Lohman to overcome this limitation, in which inter-
ference  patterns  are  generated  by  using  physical  optics
theories8.  Moreover,  CGH  can  also  provide  dynamic
holographic display  by using digital  light  field  modulat-
ors,  such  as  spatial  light  modulators  (SLMs)  and  digital
micromirror  devices  (DMDs)9,10.  However,  there  are
many  shortcomings  resulting  from  the  large  pixel  sizes
and  limited  modulation  principle  that  hinder  further 
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development  of  holographic  technology,  such  as  the
small field  of  view  (FOV),  twin  imaging,  narrow  band-
width and multiple orders of diffraction11,12.

In  recent  years,  with  the  enormous  development  of
nanofabrication technologies, metasurfaces consisting of
subwavelength nanostructures  have  attracted  much  at-
tention  in  many  optical  research  fields  due  to  their
powerful capabilities in modulating the amplitude, phase,
and polarization13,14 of  light15,  such as  beam splitters16,17,
metalenses18−24,  orbital  angular  momentum  (OAM)
devices25−30 and  structural  color  elements31−35. Holo-
grams require complicated light field modulation capab-
ilities,  and  therefore,  metasurfaces  can  be  utilized  to
achieve holographic display. The target CGH patterns for
holographic reconstructions can be calculated by physic-
al and mathematical theories, and various nanostructure
arrays are  arranged  according  to  the  designed  distribu-
tion to compose target CGH patterns. Metasurfaces pos-
sess more powerful light modulation abilities that provide
much more degrees of freedom to design holograms than
conventional  CGH  devices.  In  addition,  meta-holo-
graphy has  several  advantages  compared  with  conven-
tional  CGH,  such  as  a  higher  spatial  resolution,  lower

noise, a larger working frequency bandwidth and elimin-
ation  of  undesired  diffraction  orders11,12,36.  Meta-holo-
graphy can be divided into different  types based on dif-
ferent classification methods. For example, there are three
types  of  meta-holography  according  to  the  principle  of
the  light  field  modulation  component,  including  phase-
only holography37−41, amplitude-only holography42−44 and
complex amplitude holography45−48 (typical works shown
in Fig. 1). Additionally,  meta-holography  can  be  classi-
fied  into  the  two  categories  of  static  meta-holography
and  dynamic  meta-holography  based  on  the  number  of
optical  images  reconstructed  from  a  single  piece  of  a
metasurface element. Static meta-holography means that
only one fixed image can be reconstructed by meta-holo-
gram elements,  while  dynamic meta-hologram elements
can  reconstruct  more  than  one  image.  Dynamic  meta-
holography is  more  suitable  for  optical  display  and  in-
formation processing applications than static meta-holo-
graphy.  For  example,  to  achieve  fantastic  naked-eye  3D
display  scenes  as  shown  in  science  fiction  movies  or  to
realize optical camouflage in military reconnaissance, dy-
namic display is a fundamental and essential capability.

There  have  been  some  excellent  reviews  about
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Fig. 1 | Typical  examples  of  phase-only  meta-holography,  amplitude-only  meta-holography  and  complex  amplitude  meta-holography.
(a) 3D on-axis transmission-type phase-only meta-hologram composed of gold nanorod arrays38. (b) Phase-only metasurface-based broadband

hologram with high tolerance to fabrication errors consisting of an elongated nanoaperture array40. (c) Amplitude-only meta-hologram enabled by

a random photon sieve42.  (d)  Dielectric metasurface for complete and independent control  of the optical amplitude and phase by adjusting the

geometrical parameters and orientation angles of meta-atoms. The middle images are scanning electron microscopy (SEM) images of fabricated

samples. Experimental reconstruction overlaying the separately measured pictures at 1.65 μm (marked as red color) and 0.94 μm (marked as

blue color) wavelengths48.  Figure reproduced with permission from: (a) ref.38,  under a Creative Commons Attribution 3.0 Unported Licence; (b)

ref.40, (d) ref.48, under a Creative Commons Attribution 4.0 International License; (c) ref.42, Springer Nature.
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meta-holograms49−51, which provided big pictures for this
research field.  Here we focused on the topic of dynamic
meta-holography to give a comprehensive review for in-
troducing recent development in this paper. Based on the
realization  methods,  dynamic  meta-holography  can  be
mainly divided into two categories: tunable metasurfaces
and  multiplexed  metasurfaces.  We  investigate  these
strategies and introduce typical research works on them.
Furthermore, we also propose potential applications and
possible  development  paths  of  dynamic  meta-holo-
graphy in the future. 

Tunable meta-holography
The  majority  of  metasurfaces  are  static  and  cannot  be
tuned  after  being  fabricated.  However,  since  the  desire
for plenty applications requiring active controlling, there
are  much  effort  devoted  to  exploit  active  materials  and
tuning methods52,53, such as thermo‐optic effects (e.g. sil-
icon54−56,  lead  telluride57),  free ‐carrier  effects  (e.g.
silicon58−60,  gallium  arsenide61−63,  indium  antimonide64,
indium  tin  oxide65−68,  graphene69−71),  phase  transitions
(e.g. liquid crystals72,73,  germanium–antimony–tellurium
(GST)74−80,  vanadium  dioxide  (VO2)81−84),  stretchable
structures85−88,  chemical  reaction89,90,  and  so  on.  Also,
some  have  been  utilized  in  the  research  field  of  tunable
meta-holography. 

Phase transitions
In  recent  years,  chalcogenide  phase  change  materials
(PCMs) composed of  alloys  of  GST have become popu-
lar in the optical  storage of  commercial  DVDs and CDs
due  to  their  easy  transition  between  the  disordered
amorphous state  and  ordered  crystalline  state  by  apply-
ing thermal, optical, or electrical stimuli. Moreover, GST
has  also  been  widely  used  in  dynamic  meta-holography
and other  metasurface  research  fields  due  to  its  advant-
ages  of  a  large  refractive  index  difference  between  two
states,  high  switching  speed  and  reliable  retention74−80.
Lee  et  al.  theoretically  and  experimentally  proved  the
concept  of  an  ITO-GST-ITO  (IGI)-based  meta-holo-
gram panel77.  After IGI was fabricated, an excimer pulse
laser  at  an  ultraviolet  wavelength  was  used  to  achieve
local  crystallization of  the  GST film with  a  micrometer-
scale pixel pitch and a 16k × 16k resolution. Notably, the
fabrication  of  the  GST  hologram  panel  required  the
transfer  of  the  CGH  pattern  from  a  Cr  mask  to  an  IGI
layer,  as  shown  in Fig. 2(a).  The  large  refractive  index
difference between the amorphous and crystalline states

caused  a  significant  change  in  the  reflection  coefficient
before  and after  crystallization of  the  GST.  Holographic
images could be reconstructed from CGH patterns con-
sisting of local crystallization pixels. Zhang et al. demon-
strated a  switchable  spin-orbit  interaction  via  the  com-
bination  of  plasmonic  metasurfaces  with  PCMs78.  The
designed meta-devices were based on a simple metal–in-
sulator–metal (MIM) configuration in which the insulat-
or  layer  consisted  of  GST  and  MgF2 films,  the  bottom
layer consisted of a gold ground plane, and the top array
consisted  of  subwavelength  plasmonic  gold  antennas.
Three reflective meta-devices were fabricated and meas-
ured as a proof of concept that enabled the spin Hall ef-
fect,  vortex  beam  generation  and  a  hologram  in  the
amorphous state of  GST (“ON” state)  separately,  which
disappeared in the crystalline state of GST (“OFF” state),
as shown in Fig. 2(b). Zhou et al. proposed a similar ap-
proach  to  achieve  transmissive  dynamic  meta-holo-
graphic encryption based on a structure in which a GST
film is sandwiched between a bottom SiO2 substrate and
top  gold  split-ring  resonator  (SRR)  arrays76. The  reson-
ance behaviors  of  the  fixed  SRR  structure  were  com-
pletely different between the two states of GST, resulting
in varying  phase  and  amplitude  modulation.  The  holo-
graphic reconstruction based on continuous phase mod-
ulation in the amorphous state of GST was converted to
a binary phase in the crystalline state, as shown in Fig. 2(c).

Another  attractive  candidate  material  for  tunable
meta-holography is VO2. This strongly correlated mater-
ial exhibits an insulator‐to‐metal transition (IMT) under
thermal, electrical, or optical stimuli91. The relatively low
transformation temperature (approximately 340 K, 67 °C)
and  large  refractive  index  contrast  of  VO2 from mono-
clinic  (insulating  phase)  to  tetragonal  (metallic  phase)
make it  suitable  for  the  realization  of  switchable  metas-
urface device design. Driscoll et al. demonstrated the first
VO2-based  tunable  metasurface  device,  which  achieved
dynamic tuning  of  an  infrared  hybrid-metasurface  res-
onance  in  200881.  VO2 was also  used  to  realize  switch-
able  meta-holographic  elements.  Liu  et  al.  proposed  a
thermally  dependent  dynamic  meta-holography  design
using  a  vanadium dioxide  integrated  metasurface83.  The
unit cell was a gold split ring with VO2 filling in the gap,
as shown in the illustration of Fig. 2(d). The reconstruc-
ted images transformed from “H” to “G” as the temper-
ature  increased  from  25  °C  to  100  °C.  Furthermore,  a
new  approach  for  dynamic  meta-holography  at  optical
frequencies  by  utilizing  a  cavity  incorporating  an  active
VO2 layer  was  proposed  by  Haimov  et  al.84.  A  Bragg
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reflector  was  introduced  at  the  bottom,  and  a  nearly  π
phase  shift  could  be  obtained  from  the  reflected  waves
before and after the IMT. 

Chemical reaction
Some  specialized  chemical  reactions  were  also  used  in
the  dynamic  control  of  meta-holography.  For  example,
magnesium  (Mg)  has  great  plasmonic  properties  in  the
visible  range  and  undergoes  a  phase  transition  from  a
metal  to  a  dielectric  by  forming  magnesium  hydride
(MgH2)  upon  hydrogen  loading92.  By  using  oxygen,  the
phase transition is reversible through dehydrogenation.

Li et al.  created dynamic meta-hologram devices con-
sisting of  plasmonic  Mg  nanorods  that  constituted  ad-
dressable  pixels  by  hydrogenation/dehydrogenation  for
optical  information  encryption  design90. Li  et  al.  pro-

posed three  different  nanorods  to  demonstrate  the  cap-
ability for optical information processing and encryption.
Gold (Au) nanorods (marked as P2 in ref.90 and Fig. 3(a))
were stable and irrelevant to chemical reactions. A titani-
um (Ti) spacer and a palladium (Pd) catalytic layer were
capped on Mg nanorods to facilitate hydrogenation and
dehydrogenation  processes  (Mg/Pd,  marked  as  P1 in
ref.90),  while  a  chromium  (Cr)  capping  layer  effectively
slowed down both the hydrogenation and dehydrogena-
tion  rates  of  the  third  kind  of  nanorod  (Mg/Pd/Cr,
marked  as  P3 in  ref.90).  The  three  kinds  of  different
nanorods were placed in each unit cell and coded to gen-
erate different holographic images to realize information
encryption and dynamic control, as shown in Fig. 3(a).

Furthermore, Li et al., in another research group, the-
oretically  demonstrated  a  concept  to  realize  an
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addressable dynamic meta-hologram by utilizing similar
hydrogenation/dehydrogenation  of  Mg89.  The  proposed
meta-hologram  devices  were  composed  of  pure  Au  V-
shaped  antennas  (PVAs)  and  composite  Mg-Au  V-
shaped  antennas  (CVAs).  The  scattering  phase  of  the
CVAs was uniformly shifted by π/3 before and after hy-
drogenation. To establish a quantified phase relation and
calculate the  distribution  of  PVAs and CVAs,  an  iterat-
ive hologram algorithm based on the Fidoc method was
developed by the authors.

The  chemical  reaction  method  can  only  make  a  few
reconstructed holographic images switchable. The speeds
of hydrogenation/dehydrogenation used in these designs
were  too  slow  to  achieve  smooth  holographic  display.
Chemical control methods are more suitable for achiev-
ing  platforms  promising  for  relatively  simple  dynamic
functionalities  that  require  no  quick  response,  such  as
optical encryption and smart sensors. 

Rewritable meta-holography and stretchable
substrate meta-holography
In addition to the methods introduced above, there have
also  been  some  other  particular  and  inspiring  means  to
achieve tunable meta-holography.

As  a  two-dimensional  material  with  good  electronic
and  optical  properties,  graphene  is  a  good  choice  to  be
incorporated with metasurfaces to realize tunability. Li et

al.  demonstrated  write-once  holograms  for  wide-angle
and full-color  three-dimensional  images  enabled  by  re-
duced graphene oxide, as shown in Fig. 4(a)71. They dis-
covered  that  the  fs  laser  intensity  of  the  focal  spot  was
correlated with the refractive index modulation in the re-
duced  graphene  oxide.  The  athermal  photoreduction
could  be  confined  to  a  diffraction-limited  region  since
the fs  laser  pulse  removes  undesired  accumulative  heat-
ing. Moreover, by precise control of the laser irradiance,
reversible  reduction  and  oxidation  of  graphene  oxides
could  be  obtained  to  achieve  updatable  reduced
graphene oxide holograms.

Another interesting  tunable  meta-holography  re-
search  work  was  realized  by  Malek  et  al.  in  201787.  The
authors  demonstrated  a  reconfigurable  meta-hologram
with gold  nanorods  on  a  stretchable  polydimethylsilox-
ane  substrate.  Stretchable  metasurfaces  have  also  been
used in studies of actively tunable structural color85,86 and
zoom metalenses88. Stretching the substrate could change
the  spectrum  response  of  the  metasurface85,86,  focal
length  of  the  metalens88, and  distance  of  the  image  dis-
play  plane  from  the  meta-hologram  panel87.  By  coding
several  reconstructed  images  at  different  distances  into
one  piece  of  metasurface  on  a  stretchable  substrate,  the
displayed  holographic  images  on  the  same  observation
plane  can  be  switched  by  stretching  the  metasurface
device, as shown in Fig. 4(b). 
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Multiplexed meta-holography
Many fundamental  properties  of  light  act  as  independ-
ent  dimensions,  such  as  the  propagation  direction,
wavelength  (frequency),  polarization,  and  OAM,  which
enables multiplexing technologies.  Multiplexing techno-
logies have been widely used in the research fields of op-
tical communications  and  optical  computing  to  ex-
tremely  extend  the  bandwidths  or  enormously  increase
the  speed.  Additionally,  studies  on  meta-holograms  can
utilize similar  multiplexing  technologies  to  achieve  dy-
namic display. 

Wavelength multiplexed meta-holography
Traditional optical  holography  is  usually  displayed  un-
der a  single  wavelength  laser,  resulting  from  the  limita-
tion  of  interference  principles.  To  achieve  a  colorful
holographic display  under  white  light,  a  rainbow  holo-
gram  was  invented  in  1968  by  Dr.  Stephen  A.  Benton,
who recorded interference patterns using a slit to elimin-
ate vertical parallax and reduce spectral blur in the view-
ing  output  image.  Furthermore,  the  concept  of  rainbow
illumination was  also  introduced  into  volumetric  ima-
ging based on digital  dynamic holographic devices (e.g.,
SLMs)  to  extend  the  viewing  zone  in  both  the  vertical
and  longitudinal  directions93 but  not  for  the  purpose  of
colorful display. As diffractive elements, these digital dy-
namic  CGH  devices  possess  wavelength-dependent
properties that  make  them  not  simple  to  use  in  recon-

structed  color  imagery.  Some  special  approaches  (e.g.,
frequency  filtering94 and  phase  shift95) have  been  de-
veloped to realize full-color holographic display using di-
gital dynamic  CGH  devices  with  multiwavelength  illu-
mination.

The  broadband  display  is  of  great  importance  to  the
practical holographic applications. There are quite a few
excellent  research  works  to  achieve  broadband  meta-
holograms96−98.  To  achieve  a  colorful  meta-holographic
display,  the  abundant  degrees  of  freedom  in  designing
subwavelength  structures99−101 and  metasurface
elements102−104 have brought  about  many  novel  ap-
proaches. In 2015, Huang et al.  reported a phase-modu-
lated  multicolor  meta-hologram  element  that  consisted
of a two-dimensional array of pixels99, as shown in Fig 5(a).
There were four subpixels (two for blue, one for red and
one for green) in each pixel. The subpixel had a 4×4 alu-
minum nanorod pattern. The nanorods in each subpixel
representing different  colors  possessed  different  reflec-
tion  spectra  due  to  the  various  geometrical  sizes.  The
method proposed in this research work was a good idea
to set  up a corresponding relationship between the geo-
metrical parameters of subwavelength structures and re-
sponse spectra  while  not  bringing additional  fabrication
difficulties.  However,  the  orientation  directions  of  all
nanorods  were  the  same,  and  this  limitation  made  the
device only obtain a phase difference of 0–π. Wang et al.
proposed  a  full  phase-controlled  multiwavelength
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meta-hologram  based  on  a  similar  approach100 (Fig.
5(b)).  The  response  spectra  were  also  modulated  by  the
length  and  width  of  the  nanoblocks,  while  the  phase
delay was generated by the orientation angles of the nan-
oblocks.  The increased degree  of  freedom in rotation of
the  nanoblocks  made  it  possible  to  achieve  any  desired
phase  delay.  In  addition  to  the  various  subwavelength
structures,  other properties of the metasurface have also
been used to realize wavelength-multiplexed meta-holo-
grams.  Generally,  similar  to  other  diffractive  elements,
the sizes  and  diffraction  angles  of  reconstructed  holo-
graphic  images  are  also  related  to  the  working
wavelengths  for  normal  meta-hologram  elements.  In
2016, Wan et al. reported a wavelength-multiplexed full-
color meta-hologram design based on phase-shift  meth-
ods103,  as  shown  in Fig. 5(c).  The  additional  phase  shift
Δφ  along  the x-axis  was  encoded  into
the  metasurface  and  corresponded  to  the  tilted  angle  of
incident light with wavelength λ. This approach does not
require  complicated  geometrical  parameters  or  special
materials of nanostructures to eliminate the color disper-
sion  and  is  suitable  for  many-wavelength-multiplexed
meta-hologram  design.  Li  et  al.  demonstrated  a  seven-
wavelength  meta-hologram  and  achieved  a  1.39  times

larger  color  gamut  than  the  traditional  red/green/blue
design  (see Fig. 5(d)). Furthermore,  Zhang  et  al.  com-
bined a similar off-axis illumination method and polariz-
ation-dependent  geometric  phase  to  achieve  a  colorful
meta-hologram  in  both  transmission  and  reflection
spaces for the first time104.

Notably,  most  colorful  meta-holography  research
works  were  focused  not  on  achieving  dynamic  display
but  on  full  color  display,  data  storage  and  information
encryption. However, the reconstructed images could be
switched  by  changing  the  wavelengths  of  the  incident
light,  so  these  research  works  conform to  the  definition
of dynamic meta-holograms. 

Polarization multiplexed meta-holography
As a transverse wave, light possesses a polarization prop-
erty  that  specifies  the  orientation  of  the  oscillation,
namely,  the  direction  of  the  electric  field.  Traditional
CGH devices  are  polarization-insensitive  (e.g.,  diffract-
ive  optical  elements  and  freeform  optics)  or  can  only
work  at  specific  polarization  states  (e.g.,  liquid  crystal
SLMs). Meta-hologram elements consisting of anisotrop-
ic subwavelength structures can offer the capability to re-
spond variously according to the polarization state of the
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interacting light.  This  characteristic  makes  them appro-
priate for polarization-multiplexed holography.  In 2013,
Montelongo and  Chen  et  al.,  from two  independent  re-
search groups,  proposed  and  theoretically  and  experi-
mentally demonstrated the concept of polarization-mul-
tiplexed  meta-holograms  separately105,106. The  two  inde-
pendent images for each polarization were coded into in-
dependent  diffraction  patterns,  and  the  two  patterns
were merged to obtain one metasurface element. The re-
constructed  images  could  be  switched  by  changing  the
polarization state of incident light from one direction to
the  other  orthogonal  direction  (from  0°  to  90°).  The
merged metasurface produced the two images simultan-
eously with half the intensity at 45°. Although the results
from the two groups were similar, Montelongo et al. de-
signed metasurface  elements  by  the  amplitude  modula-
tion method, while Chen et al. implemented a four phase
level design  to  achieve  this  purpose.  All  these  basic  re-
search  works  provided  the  possibility  of  achieving
switchable meta-holographic display by changing the po-
larization state of incident light.

Besides linear  polarization  states,  spin  angular  mo-
mentum (circular  polarization  states)  also  can  be  re-
garded as a fundamental degree of freedom to encode the
meta-holography107−109. In  2015,  Wen  et  al.  experiment-

ally demonstrated a helicity-multiplexed meta-hologram
with  two  symmetrically  distributed  off-axis  images  that
were interchangeable by switching the helicity of the in-
cident light beam110. Arbabi et al. demonstrated metasur-
face  devices  with  complete  control  of  the  polarization
and phase, including polarization-switchable phase holo-
grams111.  Compared  with  Chen’s  work  based  on  four
phase levels in 2013, Arbabi’s design could realize arbit-
rary phase distributions for two orthogonal  polarization
states  by  anisotropic  dielectric  metasurfaces.  The  input
(Ein)  and  output  waves  (Eout) at  each  pixel  could  be  re-
lated by a general Jones matrix, 

T =

[
Txx Txy

Tyx Tyy

]
,

as Eout=TEin.  In  this  way,  any  desired  polarization  and
phase control can be achieved by implementing any unit-
ary and  symmetric  Jones  matrix  at  each  pixel.  Further-
more, Mueller  et  al.  developed  and  advanced  the  meth-
od  and  combined  the  geometric  phase  and  propagation
phase  to  achieve  two  independent  and  arbitrary  phase
distributions  for  any  pair  of  orthogonal  polarization
states  (linear,  elliptical  or  circular)112.  Mueller  et  al.
demonstrated this  method  by  two  independent  recon-
structed images for left-hand and right-hand circular po-
larization  states  separately,  as  shown  in Fig. 6(a).  In

 

a

c d

b
Collimating lens

Collimating lens

Fiber-coupled

laser

Fiber-coupled

laser

LP

LP

Metasurface

Metasurface

QWP@45°

QWP@135°

Metasurface Hologram

y

Ex  =1

z
x0

y

in

Ex  ,Ex 

m
h h

m
S1, S2, S3

|Ex |,|Ey |,ϕ 

lncident

electric field

Transmitted

electric field

Greyscale pattern

Analyser

Polarizer

QWP

Sample

Holographic image
θ +θ

π
2

−θ
π
2

π−θ

Fig. 6 | Polarization-multiplexed meta-holography. (a) Schematic diagram and experimental realization of a cartoon dog and cat with tailored

Si nanofins for orthogonal circular polarization multiplexing. (b) Chiral holograms that project different images depending on the handedness of

the reference beam by incorporating a geometric phase. (c)  Schematic of a structurally birefringent dielectric metasurface projecting a desired

polarization pattern encoding an RGB image with arbitrary complexity. (d) Schematic of Malus metasurfaces based on a one-to-four mapping and

two independent information channels for intensity and phase manipulation. Figure reproduced with permission from: (a) ref.112, American Physic-

al Society. (b) ref.113, under a Creative Commons Attribution NonCommercial License 4.0. (c) ref.115, American Chemical Society. (d) ref.116, un-

der a Creative Commons Attribution 4.0 International License.

Opto-Electron Adv  4, 210030 (2021) https://doi.org/10.29026/oea.2021.210030

210030-8

 



addition, the geometric phase method can also be incor-
porated  with  other  phase  modulation  approaches.  In
2016,  Khorasaninejad  et  al.  achieved  broadband  and
chiral binary  meta-holograms  by  revisiting  and  imple-
menting the principle of the detour phase and geometric
phase113.  Similarly,  two  switchable  independent  images
could  be  achieved  for  left-hand  and  right-hand  circular
polarization states separately, as shown in Fig. 6(b). This
device  also  demonstrated  the  advantages  of  broadband
operation  (from  the  visible  to  the  near-infrared)  and
high efficiency (as high as 75%). These methods utilizing
the  propagation  phase,  detour  phase  and  geometric
phase provided  more  degrees  of  freedom  for  metasur-
face polarization optics.

However,  most  research  on  polarization-dependent
meta-holograms has focused on two orthogonal states. In
2018, Zhao et al. integrated twelve polarization manipu-
lation channels for various phase profiles into a single bi-
refringent  vectorial  meta-hologram114.  In  2019,  by  using
structurally  birefringent  dielectric  metasurfaces,  Arbabi
et  al.  proposed  and  demonstrated  vectorial  holograms
with arbitrary  polarization  states  in  which  the  color  in-
formation  was  converted  to  Stokes  parameters  to  be
stored and reconstructed as a monochromatic hologram
image115. To realize the reconstructed image, as shown in
Fig. 6(c),  a  modified  Gerchberg-Saxton  algorithm  was
developed.  To  code  8-bit  (0−255)  color  images,  the
Stokes  parameters Si were  coded  as Si=(X−128)/128,
where i represents  1,  2,  or  3  and X represents  the  value
for the R, G, or B channel.

The success  of  the  advances  in  metasurfaces  re-
searches in  recent  years,  to  a  great  extent,  should be  at-
tributed to the development of  classical  optical  theories,
e.g.,  the  generalized  Snell’s law.  Currently,  the  develop-
ments still  continuously provide us with interesting and
instructive ideas. For example, Deng et al. noted the ori-
entation degeneracy implied in Malus’s law and found a
one-to-M mapping  between  the  light  irradiance  and
Pancharatnam –Berry  phase,  which  could  be  applied  to
design advanced  geometric  metasurfaces.  They  pro-
posed a  Malus-metasurface-assisted  polarization  multi-
plexing method and generated a near-field grayscale pat-
tern as well as an independent far-field holographic image
simultaneously with one sample, as shown in Fig. 6(d)116.

These polarization-multiplexed meta-hologram works
implemented many modulation approaches and implied
potential  applications  in  dual-channel  display,  anti-
counterfeiting, encryption, security and data storage. 

Angle multiplexed meta-holography
The  angular  response  characteristics  are  significant  for
diffractive  optics,  including  gratings,  diffractive  optical
elements,  and  metasurfaces.  The  corresponding  input
and output angles are correlated by physical optics theor-
ies, which make each pair of them an independent chan-
nel. This optical property provides a new degree of free-
dom to achieve multiplexed meta-holography.

In  2017,  Kamali  et  al.  introduced  an  angle-multi-
plexed  metasurface  design  composed  of  dielectric  U-
shaped units with reflective high contrast in which linear
momentum depending on the incident angle was added
to display different images at different tilted angles of in-
cidence117. The geometrical  sizes  of  the  U-shapes  in  dif-
ferent  dimensions  were  optimized  to  achieve  a  full  2π
phase  shift.  The  structure  provided  independent  phase
control under a TE-polarized light beam at 0° and 30° in-
cident angles. Two different images were coded as differ-
ent  phase  profiles  of  the  metasurface  corresponding  to
different angles, so the designed angle-multiplexed meta-
hologram  element  created  two  independent  projected
images under 0° and 30° separately, as shown in Fig. 7(a).
In this way, Kamali et al. created two independent chan-
nels corresponding  to  different  incident  angles  to  dis-
play two images. In 2020, Wang et al. proposed an angle-
multiplexed multichannel  metasurface  to  achieve  arbit-
rary  spatially  varying  light  fields118.  The  designed angle-
multiplexed metasurfaces  had  the  capability  to  inde-
pendently control the handedness and azimuth and pos-
sessed  four  channels,  as  shown  in Fig. 7(b). The  pro-
posed methods enable realization of full Poincaré beams,
dual-way switching  and  vectorial  print  images,  and  op-
tical  information  communication.  Furthermore,  the
number  of  channels  could  be  expanded  by  combining
angle  multiplexing  methods  with  other  multiplexing
methods.  As  we  discussed  above  in  section  wavelength
multiplexed  meta-holography,  an  additional  phase  shift
along a selected axis could be encoded into the metasur-
face  to  achieve  wavelength-multiplexed  meta-holo-
graphy102−104.  To  correct  the  phase  shift  for  different
wavelengths and display the reconstructed images at de-
sired  positions,  the  incident  light  beams  should  possess
the right tilted angles corresponding to the wavelengths.
Therefore,  the  reconstructed  images  could  be  switched
by  changing  the  wavelengths  of  incident  light  beams  or
incident  angles.  Strictly  speaking,  these  research  works
utilized  wavelength  multiplexing  methods  and  angle
multiplexing methods simultaneously.
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In  addition  to  achieving  a  multichannel  meta-holo-
gram,  other  types  of  dynamic  meta-holograms  can  also
be  realized  by  angle  multiplexing  methods.  In  2017,
Zhang  et  al.  proposed  an  ultrahigh-capacity  meta-holo-
gram design  by  encoding  information  in  nanohole  ar-
rays119. The  imaging  information  capacity  could  be  in-
creased 11.5 times compared with the usual metasurface
element,  and  the  compressed  image  information  could
be reconstructed by changing the tilted incident angle, as

shown  in Fig. 7(c).  The  high  capacity  of  the  designed
metasurface was achieved by transferring the evanescent
wave  to  the  propagating  wave.  At  normal  incidence,
much imaging information could not be reconstructed in
the  far  field  since  it  was  hidden  in  the  evanescent  wave
region. However, hidden information could be exhibited
via  off-axis  illumination.  The  reconstructed  meta-holo-
graphic image appeared like a dynamically varying scroll
painting  when  changing  the  incident  angle  of  the  light
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beam.  This  method could  also  be  used  in  large  capacity
optical storage and lithography technologies. 

OAM multiplexed meta-holography
As a fundamental property of photons, the orbital angu-
lar  momentum  (OAM)  plays  a  significant  role  in  many
applications  of  light,  including  optical  communication,
stimulated  emission  depletion  microscopy,  and  optical
tweezers, due to the special helical wavefront, doughnut-
shaped intensity  distribution  and  unbounded  set  of  or-
thogonal  helical  modes  (named  topological  charge l).
Additionally, recently,  many approaches have been pro-
posed to  achieve  dynamic meta-holograms by consider-
ing OAM as a degree of freedom.

Ren  et  al.  proposed  OAM-multiplexed  meta-holo-
graphy  designs  for  the  first  time  in  2019  and  achieved
dynamic holographic display, as shown in Fig. 8(a)120. In

this  paper,  Ren  et  al.  demonstrated  a  design  of  a  10-bit
OAM-multiplexed meta-hologram that could achieve 210

different OAM-dependent  holographic  images.  In  addi-
tion to the multiplexed design, two other kinds of metas-
urface OAM holograms, including OAM-conserving and
OAM-selective meta-holograms, were also demonstrated
theoretically and  experimentally.  Fang  et  al.  demon-
strated  similar  OAM-preserved,  OAM-selective  and
OAM-multiplexed holograms  based  on  the  SLM  plat-
form  and  proved  the  potential  applications  of  OAM
holography for high-security encryption121. The research
work from Ren et al. in 2019120 was based on pure phase
modulations of metasurfaces and suffered from the chal-
lenge of  channel  crosstalk,  which limited the number of
channels. Therefore, Ren et al. developed and optimized
the  method,  proposed  complex-amplitude  metasurface-
based  OAM  holography  and  demonstrated  it  with  200
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independent  OAM  channels,  as  shown  in Fig. 8(b)122.
The out-of-plane  height  of  the  nanopillar  offered  amp-
litude  control,  while  its  in-plane  rotation  generated  the
phase response. A 3D metasurface sample was fabricated
by  a  femtosecond  laser,  which  provided  possibilities  for
large-area fabrication.  Moreover,  the  demonstrated  re-
constructed  images  were  shown  as  two  independent
smooth holographic videos at two different planes, which
suggested the capability for realizing 3D holography.

ψT (x0, y0) =
ψOAM (x0, y0) + ψmeta (x0, y0) ψmeta (x0, y0)

ψOAM (x0, y0)

There  were  also  other  approaches  to  achieve  OAM-
multiplexed meta-holography.  In  2019,  Jin  et  al.  pro-
posed  a  dielectric  multimomentum  meta-transformer
design that could reconstruct different OAM beams with
different topological charges into distinct on-axis images,
as shown in Fig. 8(c)123. The meta-transformer possessed
fixed phase profiles itself but could synergize the intrins-
ic properties (e.g., OAM and linear momentum) of light
to  achieve  a  dynamic  meta-hologram.  The  total  phase
profile  of  the  transmitted  beam  was 

, where  was fixed
after  fabrication  and  defined  by  the  orientation  of  the
nanostructure array and  was the phase pro-
file  of  incident  OAM  beams,  which  was  changeable  by
switching  the  topological  charge l.  Vivid  “R ”,  “G ”  and
“B ”  reconstructed  patterns  were  demonstrated  under
red, green, and blue illumination separately to prove the
possibilities in color holographic display applications.

The OAM-multiplexed meta-hologram methods could
also  be  combined  with  other  modulation  methods  to
achieve richer  dynamic  modulation  functions.  For  ex-
ample, in  2020,  Zhou  et  al.  proposed  a  holographic  en-
cryption design based on OAM-multiplexed meta-holo-
grams  in  different  polarization  channels124.  In  this  way,
the selective  holographic  image  could  only  be  recon-
structed under the exact light beam with the right topo-
logical charge and a specific polarization state, as shown
in Fig. 8(d). Another  interesting  research  work  was  re-
ported by Yu et al.  in 2019125. In section Chemical reac-
tion,  we  introduced  the  dynamic  meta-hologram  that
could be achieved by chemical reactions of Mg due to its
phase transition property  between a  metal  and a  dielec-
tric.  In  2019,  Yu  et  al.  proposed  a  dynamic  meta-holo-
graphy  design  based  on  two  metasurface  elements.  The
first  metasurface was composed of  Mg nanorods,  which
could  generate  switchable  vortex  beams  with  different
topological  charges  (l=m and l= – m)  by  hydrogenation
and dehydrogenation reactions. The second metasurface
could generate  different  reconstructed  images  in  re-
sponse  to  the  OAM  beams  with  designed  topological

charges m and –m. By using these two cascaded metasur-
faces, a dynamic meta-hologram was achieved, as shown
in Fig. 8(e). 

Space channel multiplexed meta-holography
One can obtain some inspiration for designing dynamic
meta-holograms  by  comparing  dynamic  meta-holo-
grams and common 2D display technologies in daily life.
There are several approaches to achieve good 2D display
apart from pixel display screens. One practical approach
is the cinematographic method, which projects different
images  from  a  continuous  video  at  different  times;  the
other way is dividing whole images into many subgraphs
and displaying them in different combinations at differ-
ent times, e.g., the digital tube of an electronic scoreboard.

In 2020, Izumi et al. demonstrated a meta-holograph-
ic movie by the cinematographic approach126. Forty-eight
meta-hologram  channels  were  arrayed  on  a  substrate,
and the  substrate  was  fixed  on  a  two-axis  electric  mov-
ing stage  and  moved  in  a  designed  sequence  at  a  de-
signed speed. Each hologram channel was sequentially il-
luminated and  each  holographic  frame  was  reconstruc-
ted  on  a  screen,  as  shown in Fig. 9(a).  A  smooth  movie
could  be  achieved  with  a  frame  rate  of  30  frames  per
second.  In  the  same  year,  Gao  et  al.  proposed  dynamic
3D meta-hologram designs with large frame number and
high frame rate based on space channel methods127.  The
meta-hologram  samples  were  divided  into  many  space
channels and  illuminated  by  a  high-speed  coded  struc-
tured light beam. In addition to a cinematographic meta-
holographic  video  with  twenty  frames,  a  space  channel
multiplexed meta-hologram  of  28  bits  was  also  demon-
strated,  which  could  display  228 different  frames,  as
shown  in Fig. 9(b).  To  generate  a  high  precision  coded
structured  light  beam,  a  dynamic  space  beam  coding
module consisting of a DMD, a tube lens and an object-
ive lens was built, which made the high frame rate of the
meta-hologram system achieve 9523 frames per second. 

Nonlinear wavelength multiplexed meta-holography
Most  research  works  on  metasurfaces  were  operated  in
the  linear  optics  regime,  including  meta-holography.
However, researchers  have  extended  metasurface  re-
search  to  the  nonlinear  optics  regime  in  recent
years128−130.  For  example,  in  2015,  Li  et  al.  were  inspired
by the concept of spin-rotation coupling, experimentally
demonstrated  nonlinear  metasurfaces  containing
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plasmonic  antennas  and  theoretically  proved  that  the
concept  could  be  applied  to  dielectric  and  bulk-like
metamaterials128.

In  2016,  Ye  et  al.  combined  nonlinear  metasurfaces
and  several  multiplexing  methods  to  achieve  spin-  and
wavelength-multiplexed  nonlinear  meta-holography131.
Since these metasurfaces are still static elements, nonlin-
ear meta-holography could also be regarded as a  special
multiplexing method. The split-ring resonator was selec-
ted as  the  meta-atom  to  design  the  nonlinear  metasur-
face due to its strong polarization properties in linear op-
tics  and  high  efficiency  of  second-harmonic  generation.
The reported  design  allowed  the  construction  of  mul-
tiple  independent  holographic  images  by  fundamental
and second  harmonic  waves  with  different  spins  separ-
ately,  as  shown  in Fig. 10(a).  Nonlinear  meta-holo-
graphy provides  independent  and  crosstalk-free  chan-
nels for holographic reconstruction, which is suitable for
multichannel  holographic  display,  optical  data  storage
and optical encryption. 

Incident light field multiplexed meta-holography
The coded information for holographic reconstruction of
all the research works we discussed above was fabricated
on  the  metasurface  elements  and  not  embedded  in  the
incident light beams. Even for methods with modulation
of incident light, e.g., OAM multiplexing methods120,122,123,
the  OAM  beam  with  a  specific  topological  charge  was
only  used  to  select  and  open  the  target  channel  and
did  not  contain  any  information  for  holographic
reconstruction.

In  2020,  Qu  et  al.  proposed  an  interesting  research
work  about  incident  light  field-multiplexed  meta-holo-
graphy (named the “reprogrammable meta-hologram” in
ref.132),  which  divided  the  hologram  information  into
two matrices132.  One information matrix was coded into
the metasurface as usual;  however,  the other matrix was
coded into the incident light beam. The phase matrix of
incident  light  was  an  additional  degree  of  freedom  to
design  the  meta-hologram.  This  work  paved  a  new way
to  optical  information  encryption.  In  this  way,  the

 

He-Ne laser

(λ: 633 nm)

Hologram frames

Structured

laser

beam

Original frame
−0.5

−0.5

−0.2

0

0.2

−0.35

0.35

0

0.5

Reconstruced

frame
0.5

0
0

kx/k0

kx/k0

ky/k0ky/k0

x
y

y
x
z

z

Reconstructed image

2 3 4 10

a

b

Fig. 9 | Space channel-multiplexed meta-holography. (a) Schematic of a cinematography-inspired metasurface holographic movie. Time-lapse

images were reconstructed using sequentially arranged metasurface hologram frames. (b) Schematic of a space channel multiplexed metasur-

face. A structured laser beam opens a specific space channel in the designed sequence, and continuous frames of a holographic video are dis-

played. Figure reproduced with permission from: (a) ref.126, under the terms of the OSA Open Access Publishing Agreement. (b) ref.127, under a

Creative Commons Attribution License 4.0.

Opto-Electron Adv  4, 210030 (2021) https://doi.org/10.29026/oea.2021.210030

210030-13

 



method could achieve infinite arbitrary holographic im-
ages and videos by a static metasurface and dynamic in-
cident light, as shown in Fig. 10(b). 

Multi-dimensions multiplexed meta-holography
In practical applications, to increase frame numbers and
degrees of freedom to encode holograms, multiple meth-
ods  can  be  utilized  to  design  a  meta-hologram  element
simultaneously. As we discussed above, Li et al.  demon-
strated  a  colorful  meta-hologram  by  making  use  of
wavelength and angle multiplexed method at same time.
And  Yu  et  al.  proposed  a  dynamic  meta-holography
design based on two metasurface elements, in which first
element  was  achieved by  chemical  reaction method and
second  one  utilized  OAM  multiplexed  approach.
Moreover,  in  2018,  Jin  et  al.  demonstrated  (26–1)  spin-
and wavelength-encoded holograms by manipulating six
bases  of  incident  photons  simultaneously  to  reconstruct
6-bit wavelength-  and  spin-dependent  multicolor  im-
ages  as  shown  in Fig. 11(a)133.  Furthermore,  in  2020,
Deng  et  al.  proposed  a  multi ‐freedom  metasurface,
which  combined  geometric  Pancharatnam –Berry  phase
and detour phase. The method allowed us to control the
complex  amplitude  and  polarization  of  the  wavefront

simultaneously  with  totally  decoupled  wavelength  and
incident  angle  dependence,  and  ultimately  to  achieve
full ‐color  complex ‐amplitude  vectorial  meta ‐hologram
as shown in Fig. 11(b)134.

Besides  dynamic  holographic  display,  there  were  also
some interesting research works about combining meta-
hologram and other imaging methods recently.  In 2020,
Li  et  al.  experimentally  demonstrated  a  three ‐channel
metasurface which can simultaneously record a continu-
ous  grayscale  nanoprinting  image  in  the  near  field  and
project  two  independent  holographic  images  in  the  far
field135. In the same year, Dai et al. proposed a “three‐in‐
one” metasurface device which simultaneously acted as a
structural ‐color  nanoprint  element,  a  polarization ‐ con-
trolled  grayscale  metasurface  image  displayer  and  a
phase‐modulated meta‐hologram136.  These  excellent
works  inspired  researchers  to  explore  more  possibilities
of meta-holograms. 

Discussion and outlook
In summary,  we  have  discussed  recent  advances  in  dy-
namic  meta-holography.  Compared  with  traditional
CGH  devices,  metasurfaces  have  many  advantages  for
holographic  display,  such  as  a  large  FOV,  a  high
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resolution,  and  low noise.  Benefiting  from the  powerful
capabilities in modulating the amplitude, phase, and po-
larization of light, metasurfaces provide multiple degrees
of freedom for dynamic hologram design.  In this paper,
we  reviewed  typical  research  works  on  dynamic  meta-
holography based  on  various  methods,  including  tun-
able  metasurfaces,  multiplexed  metasurfaces  and  multi-
dimensions multiplexed  metasurfaces.  From  the  discus-
sion  above,  it  can  be  found  that  dynamic  meta-holo-
graphy  has  many  applications  in  optical  storage,  anti-
counterfeiting,  security,  lithography,  optical  encryption
and holographic display.

For smooth  holographic  display,  it  is  essentially  re-
quired  to  achieve  infinite  numbers  of  vivid  frames  at  a
considerable  frame  rate.  In  this  respect,  some  progress
has  been  made  through  multiple  methods.  However,
these  methods  are  still  far  from  achieving  the  ultimate
holographic  display,  as  shown  in  science-fiction  films.
One  ideal  and  general  approach  to  achieve  a  dynamic
meta-hologram  is  to  control  the  interaction  between
waves and each nanostructure of the metasurface at high
speed, similar to the display strategy of LED pixel arrays
or LCD screen in showing 2D images in our daily life. In
other  words,  we  need  a  metasurface-based  SLM  with
good performance  in  terms of  the  refresh rate,  modula-
tion  efficiency  and  broadband  response  in  the  visible
range.

Recently, several  groups  reported  their  research  pro-
gress  in  electrically  tunable  metasurface-based
SLMs68,72,137. Although these works were based on differ-
ent materials and methods, all of these designs were one-
dimensional (1D) metasurface-based SLMs. 1D SLMs are
suitable for the applications of beam steering, 1D focus-
ing and lidar but not for holographic display. 2D metas-

urface-based SLMs  in  the  visible  range  are  still  challen-
ging and difficult to achieve due to the limitations of fab-
rication  technologies.  Therefore,  OAM122,  space
channel127 and  reprogrammable132 methods  provide
promising and alternative approaches to achieve dynam-
ic meta-holography in specific application scenarios due
to their excellent performance in terms of frame number
and frame rate. With the rapid development of nanofab-
rication  technologies  and  creative  design  methods,  we
believe  that  ideal  dynamic  meta-holography  will  appear
in the near future.
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