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Section 1: Chemical ordering/disordering in substitutional alloys
In a system close to its equilibrium, the general equation for relaxation of the order parameter 7(r, t) varying in coordi-
nate space () and time () reads"*’
aﬂ(r,t) — I GF(T) ) (Sl)
ot 28 84(r)

where f=kgT, [ is the characteristic frequency of the relaxation process, F(r) the local free energy of the system, and

OF/ on the functional derivative of the free energy.
For a substitutional alloy, equation (S1) can be rewritten in a discrete approximation for chemical ordering via atomic

diffusion through vacancies in the atomic lattice,
D L P(r—ryxe, (oot (2)
Ot 2B SA(r")

which is similar to that introduced previously, for instance, in Ref.*. The notations in equation (S2) are as follows:

A(r, t)=1(r, t)—x is the deviation of the probability for the occupation of the site r by an atom of the specific kind A from
the fully disordered state in the alloy, x=Na/N the total concentration of the component A, N, and N are respectively the
number of atoms of the component A and total number of atomic sites, ¢,(t) the vacancy concentration, and 7{r—r")xc, is
the probability for a jump of an atom A from a site 1’ to a site r per a unit of time. The Gibbs free energy of mixing for the
subsystem A in a substitutional alloy can be written as*

F= %ZV(;’ =)+ B nlny +(1-mIn(-n)] , (S3)

where the first term is the energy of the subsystem A in which V(r—r') is interaction potential of atoms of the component
A occupying the sites r and 7', while the second term is the entropy of mixing. The second term is obtainable from the
general Boltzmann equation S=kglnW, where W=N!/N,!(N-N,)!. Taking in account the Stirling formula, ie.,
InN!=NInN—-N, after algebraic transformations the entropy in the completely disordered state can be written as
S, =—Nk;[xInx+(1-x)In(1-x)] . (S4)
In the case of partially ordered alloy, i.e., when the probability for finding of an atom A in a site r differs from x, equa-
tion (S4) can be rewritten as S=-k, Y .[#Iny+(1—#)In(1—#)]. Then, neglecting high-power terms in the expansions of
In(1+A/x)=A/x=A*/(2x*)+... and In[1-A/(1-x)]=—A/(1-x)—A*/[2(1-x)*] ... and taking into account that " A(r)=0 and
> A*(r)=0, we obtain the change of the free energy

AF=SSIY +%«S JARAC) (55)
where &, is the Kronecker delta. The functional derivative of AF on A(r') is™
SAF B
-+ 4. 1A . S6
A Zr: V(r—r') -2  JA(r) (S6)

Then, by using the convolution theorem for the Fourier transformation, equation (S2) for relaxation of the order pa-
rameter can be rewritten as an equation describing growth of concentration wave with the amplitude A(k, ) ™

OA(k,t)  xc,(t) B
o 2p [V(k)+x(l_x)]L(k)A(k,t), (§7)

where A(k), L(k), and V(k) are the Fourier transforms of A(r), 71r), and V(r), respectively.

I By definition, the functional derivative JAF/JA(r') is a coefficient of JA(r') in the relation of JAF =

M—FBA( "Ydr'. For a variation of AE, we have from equation (S5) that
OA(r")
OAF = lZ[V(r —r')+ L&”, HA@)SA(r") + A" )OA(r)}
2 rr’ x(l - x)
=A@ [V(r-r)+ B 8, 10A(r")
7 = x(1—x)

YAV —r)+—P 5, 166
v = x(1—x)
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2 Substitution of equation (S6) into equation (S2) gives that
8A r,t " "
oAt __ er(r V(' —r")A(r )— ZZF(;’ "8, A(r").
2/3 ror" 1 x) o

ot
SILr—r WV —r")=W(r—r"); ZF(r—r )8, =1 (r—r")

6A(r,t) _xc ¢ _
= 25 %W(R A(r—R)— 2(1_36)%:1”(R)A(r R),

where R=r—r". As> W(R)A(r—R)=W *A and > . I'(R)A(r—R)=17 A, that is, the convolutions of two functions,
R R

using the convolution theorem for the Fourier transformation, we get that

0 xc,
EF[A]__ 25 FIW]F[4] - T —x)

where F[A]=A(k), k is the wave vector of the concentration wave with amplitude of A, F{[W], and F[/] are the Fourier
transforms as well. In order to calculate F[ W], we note that
W(r—r")=W(R)=YV(R-(-r)(r-r)=XV(R-R)[(R)=V*T,
r' R’

FII]F[A],

where R'=r—r".

By analyzing the stability of the system with respect to growth of concentration waves, we get

kT (k
Vk)= _B—c() , (S8)
x(1-x)
where T. is the temperature for the order-disorder transition, which depends on k. Then we get
T -T@#)c,(t
0A(k,t) _ LIk, T(H)]T, —T(t) c,( )A(k,t) . (59)

ot 2 T() 1-x

For the body-centered cubic (bcc) lattice and k=2m/a, in which each lattice point has 8 nearest neighbors, we obtain
that

L(k) = I (r)exp(—ikr)=I") exp[—i(b, + b, + b,)(xa, + ya, +za,)]| =81 , (S10)

where a; (i=1, 2, 3) are primitive vectors of the lattice, x, y, and z are integers, and b; are reciprocal lattice vectors, so that
a;b=21;. We assume that the atomic jumps to different nearest lattice sites have the same probability, and so, /{r)=/"

® The order parameter can be represented as a plane-wave expansion A(r) = > A(k) e+ A" (k)e ™ .
%

Substituting this expansion into equation (S5) and taking in account, for simplicity, only a one concentration wave —
with a wave vector k, we get that

AF = %Z[V(r -r') +—5(1ﬁ AR + A" (k)e ] [A(k)e™ + A" (k)e™]
rr' X

—x)
AR TV (1) # L et e

x(1—x)

l 2 o Bd, ik(r—r")
+2|A(k)| ;;[V(r r)+x(1_x)]e Saere)

We also have that > [V(r—r") +&] X —v(k)+ B .
= x(1—x) x(1—x)

+2ikr

As the terms with A%(k) and c.c. are equal to zero because e =0, so that we have the change of the Gibbs en-

r

ergy of mixing as follows

B
AF = Z|A 1V (k) + (1—x)]'

When the temperature T is equal to the critical temperature T.(k) of the order-disorder transition, we get AF=0 and
thus equation (S8).
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According to the Einstein relation for the Brownian motion, we have that the diffusion coefficient for the atomic
jumps to nearest lattice sites in the bcc lattice is

D :ﬂ(ﬁa)z
2
Then, we have that
Ltk.t) =%2T(f)] ,

where D=Doexp(-En/ksT) is the diffusion coefficient, En the activation energy for atomic diffusion (or enthalpy of va-
cancy migration), and D, the pre-exponential factor. Therefore, equation (S9) can be rewritten as

%—oc(t)Azo , (S11)
dt

where a=32D(t)(T—T)c.(t)/[ Ta*(1—x)], whose solution is
AIT(H)]= A(0)expl[” a(t)dt] , (S12)

where and t#, t, the starting and finishing moments of ordering (disordering) at T<T. (T>T.). The quantity of ¢,(f) can be
found from the relaxation equation of the Bloch type
de, ¢ (T)—c,

dt T

where ceq(T)=exp(—E./ksT) is the equilibrium vacancy concentration, E, the enthalpy of vacancy formation, and #=L*/D

) (S13)

the relaxation time, which is the characteristic time of vacancy life between its formation and annihilation at crystallite
boundaries, and L the crystalline grain diameter. The solution of equation (S13) [or equation (2) in the main body] is as
follows:

c.(t)= exp{—%jexp[—Em IT(,)dr, ]} x l:cv 0) +Tij'exp{—% +Titj'exp[—5m IT¢, )]dtz} dtl:l ,

where 7,=L*/D, and E=E+E,.
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