
Opto-Electronic 
Advances  

Supplementary Information
2020, Vol. 3, No. 1 

 

190027‐S1 

© 2020 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved. 

DOI: 10.29026/oea.2020.190027 

Direct laser interference patterning of 
nonvolatile magnetic nanostructures in Fe60Al40 
alloy via disorder‐induced ferromagnetism 
Philipp	Graus1*,	Thomas	B.	Möller1,	Paul	Leiderer1,	Johannes	Boneberg1,	
Nikolay	I.	Polushkin2* 
1Department of Physics, University of Konstanz, 78457 Konstanz, Germany. 2Institute for Physics of Microstructures of RAS, 603950 GSP-105 

Nizhny Novgorod, Russian. 

*Correspondence: P Graus, E-mail: philipp.graus@uni-konstanz.de; N I Polushkin, E-mail: nip@ipmras.ru 

 

 

This file includes:  
 
Section 1: Chemical ordering/disordering in substitutional alloys 
 

Supplementary information for this paper is available at https://doi.org/10.29026/oea.2020.190027 

 



                    Opto-Electronic Advances    https://doi.org/10.29026/oea.2020.190027 

 

190027‐S2 

© 2020 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved. 

Section 1: Chemical ordering/disordering in substitutional alloys 
In a system close to its equilibrium, the general equation for relaxation of the order parameter (r, t) varying in coordi-
nate space (r) and time (t) reads1,2,3 

( , ) δ ( )
δ ( )2

η r t F r
η rt β
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 


  ,                                    (S1) 

where =kBT,  is the characteristic frequency of the relaxation process, F(r) the local free energy of the system, and 
F/ the functional derivative of the free energy.  

For a substitutional alloy, equation (S1) can be rewritten in a discrete approximation for chemical ordering via atomic 
diffusion through vacancies in the atomic lattice,   
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which is similar to that introduced previously, for instance, in Ref.4. The notations in equation (S2) are as follows: 
(r, t)=(r, t)x is the deviation of the probability for the occupation of the site r by an atom of the specific kind A from 
the fully disordered state in the alloy, x=NA/N the total concentration of the component A, NA and N are respectively the 
number of atoms of the component A and total number of atomic sites, cv(t) the vacancy concentration, and (rr)xcv is 
the probability for a jump of an atom A from a site r to a site r per a unit of time. The Gibbs free energy of mixing for the 
subsystem A in a substitutional alloy can be written as4 

,
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where the first term is the energy of the subsystem A in which V(rr) is interaction potential of atoms of the component 
A occupying the sites r and r, while the second term is the entropy of mixing. The second term is obtainable from the 
general Boltzmann equation S=kBlnW, where W=N!/NA!(NNA)!. Taking in account the Stirling formula, i.e., 
lnN!NlnNN, after algebraic transformations the entropy in the completely disordered state can be written as  

0 B[ ln (1 )ln(1 )]S Nk x x x x      .                             (S4) 
In the case of partially ordered alloy, i.e., when the probability for finding of an atom A in a site r differs from x, equa-

tion (S4) can be rewritten as B [ ln (1 )ln(1 )]rS k η η η η     . Then, neglecting high-power terms in the expansions of 
ln(1+/x)=/x2/(2x2)+… and ln[1/(1x)]/(1x)2/[2(1x)2]… and taking into account that ( ) 0r r  and 

3( ) 0r r  , we obtain the change of the free energy 

,
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where rr is the Kronecker delta. The functional derivative of F on (r) is†1 
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  .                            (S6) 

Then, by using the convolution theorem for the Fourier transformation, equation (S2) for relaxation of the order pa-
rameter can be rewritten as an equation describing growth of concentration wave with the amplitude A(k, t) †2: 
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where A(k), L(k), and V(k) are the Fourier transforms of (r), (r), and V(r), respectively.  
 

†1 By definition, the functional derivative / ( )δ F δ r   is a coefficient of ( )δ r   in the relation of δ F   
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 . For a variation of F, we have from equation (S5) that  
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†2 Substitution of equation (S6) into equation (S2) gives that
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where R=rr. As ( ) ( )
R

W R r R W     and ( ) ( )
R

R r R     , that is, the convolutions of two functions, 

using the convolution theorem for the Fourier transformation, we get that  
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where F[]=A(k), k is the wave vector of the concentration wave with amplitude of A, F[W], and F[] are the Fourier 
transforms as well. In order to calculate F[W], we note that 
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where R=rr.  
 
By analyzing the stability of the system with respect to growth of concentration waves, we get †3 
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 ,                                 (S8) 

where Tc is the temperature for the order-disorder transition, which depends on k. Then we get  
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 .                      (S9) 

For the body-centered cubic (bcc) lattice and k=2/a, in which each lattice point has 8 nearest neighbors, we obtain 
that 

1 2 3 1 2 3( ) ( )exp( i ) exp[ i( )( )] 8
r r

L k r kr x y z          b b b a a a    ,           (S10) 

where ai (i=1, 2, 3) are primitive vectors of the lattice, x, y, and z are integers, and bi are reciprocal lattice vectors, so that 
aibj=2ij. We assume that the atomic jumps to different nearest lattice sites have the same probability, and so, (r).   
 

†3 The order parameter can be represented as a plane-wave expansion i i( ) ( )e ( )ekr kr

k
r A k A k    . 

Substituting this expansion into equation (S5) and taking in account, for simplicity, only a one concentration wave – 
with a wave vector k, we get that  
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As the terms with A2(k) and c.c. are equal to zero because 2ie 0kr

r

  , so that we have the change of the Gibbs en-

ergy of mixing as follows 
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

 . 

When the temperature T is equal to the critical temperature Tc(k) of the order-disorder transition, we get F=0 and 
thus equation (S8). 
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According to the Einstein relation for the Brownian motion, we have that the diffusion coefficient for the atomic 
jumps to nearest lattice sites in the bcc lattice is 

23( )
6 2

D a
  .

 
Then, we have that 

2

64 [ ( )]( , ) D T tL k t
a

  ,
 

where D=D0exp(–Em/kBT) is the diffusion coefficient, Em the activation energy for atomic diffusion (or enthalpy of va-
cancy migration), and D0 the pre-exponential factor. Therefore, equation (S9) can be rewritten as  

d ( ) 0
d
A α t A
t
   ,                                    (S11) 

where =32D(t)(TcT)cv(t)/[Ta2(1x)], whose solution is  
2

1
[ ( )] (0)exp[ ( )d ]t

tA T t A α t t   ,                               (S12) 

where and t1, t2 the starting and finishing moments of ordering (disordering) at T<Tc (T>Tc). The quantity of cv(t) can be 
found from the relaxation equation of the Bloch type 

eq vv
( )d

d
c T cc

t τ


  ,                                    (S13) 

where ceq(T)=exp(Ev/kBT) is the equilibrium vacancy concentration, Ev the enthalpy of vacancy formation, and =L2/D 
the relaxation time, which is the characteristic time of vacancy life between its formation and annihilation at crystallite 
boundaries, and L the crystalline grain diameter. The solution of equation (S13) [or equation (2) in the main body] is as 
follows: 

v v
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where 0=L2/D0 and E=Em+Ev .  
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