Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip

Fanfan Lu¹, Wending Zhang¹*, Ligang Huang², Shuhai Liang¹, Dong Mao¹, Feng Gao³, Ting Mei¹* and Jianlin Zhao¹

¹MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China; ²Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044, China; ³MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China

* Correspondence: W D Zhang, Email: zhangwd@nwpu.edu.cn; T Mei, Email: ting.mei@ieee.org

This file includes:
Section 1: Derivation of eigenvalue equation
Section 2: Enhancement factor of the silver tip directly illuminated by far-filed excitation light

Supplementary information is available for this paper at https://doi.org/10.29026/oea.2018.180010
Section 1: Derivation of eigenvalue equation

A silver cylinder, with cylindrical interface infinitely extending along the z axis, is surrounded with air. ε_s and ε_a are the dielectric permittivity of the silver and air, respectively. The amplitudes E_z, H_z, E_{φ}, H_{φ}, E_x, H_x are the components of the cylindrical electromagnetic field propagation along the z axis which are defined by harmonics of the form: $U_m(\rho)\exp(\pm im\varphi \pm iqz)$ for $j=1, 2; m=0, 1, 2, 3$, where U_m are cylindrical functions of order m and the radial coordinate ρ. These amplitudes are shown in Table 1, in which R is radius of the sliver cylinder.

| Table 1 | Cylindrical interface own mode components

| U_j | Core: $\rho \leq R$, $j=1$ | Cladding: $\rho \geq R$, $j=2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E_z</td>
<td>$A_1 I_m(\chi_s \rho)$</td>
<td>$A_2 K_m(\chi_s \rho)$</td>
</tr>
<tr>
<td>H_z</td>
<td>$B_1 I_m(\chi_s \rho)$</td>
<td>$B_2 K_m(\chi_s \rho)$</td>
</tr>
<tr>
<td>E_{φ}</td>
<td>$A_1' I_m(\chi_s \rho)\frac{q}{\chi_s \rho} - B_1 I_m(\chi_s \rho)\frac{mk_s}{\chi_s^2 \rho}$</td>
<td>$A_2' K_m(\chi_s \rho)\frac{q}{\chi_s \rho} - B_2 K_m(\chi_s \rho)\frac{mk_s}{\chi_s^2 \rho}$</td>
</tr>
<tr>
<td>H_{φ}</td>
<td>$B_1' I_m(\chi_s \rho)\frac{q}{\chi_s \rho} + A_1 I_m(\chi_s \rho)\frac{mk_s}{\chi_s^2 \rho}$</td>
<td>$B_2' K_m(\chi_s \rho)\frac{q}{\chi_s \rho} + A_2 K_m(\chi_s \rho)\frac{mk_s}{\chi_s^2 \rho}$</td>
</tr>
<tr>
<td>E_x</td>
<td>$-A_1 I_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_1 I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}$</td>
<td>$-A_2 K_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_2 K_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}$</td>
</tr>
<tr>
<td>H_x</td>
<td>$-A_1 I_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_1 I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}$</td>
<td>$-A_2 K_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_2 K_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}$</td>
</tr>
</tbody>
</table>

I_m — modified Bessel function of order m; $I'_m(x) = dI_m(x)/dx$.

K_m — modified Hankel function of order m; $K'_m(x) = dK_m(x)/dx$.

Based on the electromagnetic field components in Table 1 and the corresponding boundary conditions of electromagnetic field components, the relationship between A_1 and A_2, B_1 and B_2 can be written as

$$
A_1 = A_1 I_m(\chi_s \rho) K_m(\chi_s \rho) \\
B_1 = B_1 I_m(\chi_s \rho) K_m(\chi_s \rho) \\
B_2 = B_2 I_m(\chi_s \rho) K_m(\chi_s \rho)
$$

(1)

$$
B_1 I_m(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + A_1 I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho} = B_2 K_m(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + A_2 K_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho} \\
-A_1 I_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_1 I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho} = -A_2 K_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + B_2 K_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}
$$

(2)

Substituting Eq. (1) into Eq. (2), a system of homogeneous equations for A_1 and B_1 can be expressed as

$$
I_m(\chi_s \rho)\left(\frac{mq}{\chi_s^2 \rho} - \frac{mk_s}{\chi_s^2 \rho}\right)A_1 + \left[I_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} - I_m(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho}\right]K'_m(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho}B_1 = 0 \\
-I_m'(\chi_s \rho)\frac{k_s \varepsilon_s}{\chi_s \rho} + I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}A_1 + I_m(\chi_s \rho)\frac{mq}{\chi_s^2 \rho}B_2 = 0
$$

(3)

Eq. (3) can be further written as

$$
\begin{bmatrix}
M_1 & N_1 \\
M_2 & N_2
\end{bmatrix}
\begin{bmatrix}
A_1 \\
B_1
\end{bmatrix} = 0 .
$$

(4)

where
For TM0\(_m\) mode, \(m=0\) and \(H_z=0\), thus \(B_1=B_2=0\). So that \(M_1=M_2=0\) in Eq. (5). If there is a solution to TM0\(_m\) mode, \(A_1\) and \(B_1\) in Eq. (4) cannot be all equal to zero, thus the characteristic determinant of Eq. (4) must equal to zero, and can be expressed as

\[
-I_0'(x, \rho) \frac{k_0 e_{Ag}}{i \chi_1} + I_0(x, \rho) \frac{k_0 e_{Ag}}{K_m(x, \rho)} = 0.
\]

In addition, taking account of \(I_0' = I_1, \ K_0' = -K_1\), Eq. (6) can be written as

\[
\frac{I_1(x, \rho)}{\chi_1} = -\frac{K_1(x, \rho)}{K_m(x, \rho)} \frac{e_d}{\chi_2}.
\]

That is the eigenvalue equation of TM0\(_m\) mode.

Similarly, for HE\(_{m\pi}\)/EH\(_{m\pi}\) mode, \(m \neq 0; \ H_z \neq 0\) and \(E_z \neq 0\), thus \(B_\pi \neq 0, A_\pi \neq 0\). The characteristic determinant of Eq. (4) must be equal to zero, and can be expressed as

\[
\left(\frac{m q}{\chi_1^2} - \frac{m q}{\chi_2^2} \right)^2 = \frac{I_0'(x, \rho)}{I_m(x, \rho)} \frac{k_0 e_{Ag}}{K_m(x, \rho)} \frac{k_0 e_{Ag}}{K_m(x, \rho)} = 0.
\]

Let \(W_1 = \chi_1 \rho, \ W_2 = \chi_2 \rho\), Eq. (8) can be obtained as

\[
m^2 \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right) \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right) = \left(\frac{1}{W_1^2} I_m(W_1) - \frac{1}{W_2^2} I_m(W_2) \right) \left(\frac{1}{W_1^2} K_m(W_1) - \frac{1}{W_2^2} K_m(W_2) \right).
\]

Eq. (9) can be simplified as

\[
m^2 \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right) \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right) = (S - T) \left(\frac{e_{Ag}}{W_1^2} - \frac{e_d}{W_2^2} \right),
\]

where

\[
S = \frac{1}{W_1^2} I_m(W_1), \quad T = \frac{1}{W_2^2} K_m(W_2).
\]

Furthermore, Eq. (10) can be written as

\[
S = \frac{T}{2} + \frac{e_d}{e_{Ag}} \pm \frac{1}{2} \sqrt{\left(\frac{1}{e_{Ag}} \right)^2 - 4 \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right)^2 - m^2 \left(\frac{1}{W_1^2} - \frac{1}{W_2^2} \right)^2},
\]

where ‘\(\pm\)’ represents the eigenvalue equation of EH\(_{m\pi}\) and HE\(_{m\pi}\) modes, respectively. Additionally, since the radial number of EH\(_{m\pi}/HE_{m\pi}\) mode can only take \(n=1\), as the radial field distribution has only one maximum at the metal-air interface. And for each order \(m\), there is only one solution for Eq. (12), that is HE\(_{m\pi}\) mode for \(m \geq 1\).
Section 2: Enhancement factor of the silver tip directly illuminated by far-filed excitation light

We compared the enhancement factor (EF) of the grating-assisted coupling silver tip with far-field excitation light directly illuminating the silver tip (Fig. S1(a)). The excitation field TFSF with polarization parallel to the tip axis is used in this case. Figures S1(b) and S1(d) show the non-gap and gap mode electric field intensity distributions located 1 nm below the tip apex, respectively. Due to the propagating loss, the EF of grating-assisted tip is smaller than that of direction illumination of the silver tip with far-filed excitation light. However, the EF of grating-assistant tip is still within an acceptable range3.

Supplementary information references

Fig. S1 | (a) Sketch map of the silver tip directly illuminated by far-filed excitation light; Non-gap (b) and gap mode (d) electric field intensity distribution located 1 nm below the silver tip; Non-gap (c) and gap mode (e) electric intensity distribution in the x-z plane.