Lanthanide-based downshifting layers tested in a solar car race

Sandra F. H. Correia¹, Ana R. N. Bastos¹, Lianshe Fu¹, Luís D. Carlos¹, Paulo S. André²,³* and Rute A. S. Ferreira¹*

The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most limiting factors for PV performance. To overcome this constraint through the enhancement of solar energy harvesting, luminescent downshifting (LDS) layers are very promising to shape the incident sunlight and, thus, we report here the use of Tb³⁺- and Eu³⁺-doped organic-inorganic hybrid materials as LDS layers on Si PV cells. Electrical measurements on the PV cell, done before and after the deposition of the LDS layers, confirm the positive effect of the coatings on the cell’s performance in the UV spectral region. The maximum delivered power and the maximum absolute external quantum efficiency increased 14% and 27%, respectively. Moreover, a solar powered car race was organized in which the small vehicle containing the coated PV cells presented a relative increase of 9% in the velocity, when compared to that with the uncoated one.

Keywords: photovoltaics; downshifting layers; solar car; organic-inorganic hybrids; lanthanide ions

Introduction

The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most important factors contributing to limit the maximum efficiency of the cells, accounting for the losses associated with the excess energy of the absorbed above-bandgap energy photons and with the non-absorption of photons with energy below the bandgap of the PV cell. Also, in diffuse radiation conditions, the performance of crystalline silicon (c-Si) PV cells is greatly impaired, because clouds (water-vapour) absorbs mostly in the visible and near infrared (NIR) spectral regions, overlapping the c-Si PV cells highest performance spectral range (cell sensitivity decreases with increasing air mass). Thus, under cloudy skies the available radiation on Earth has a larger contribution (30%) of the shorter wavelengths (those not absorbed by water), when compared with that found in sunny days¹². So, in locations where the most part of solar irradiance is diffuse (cloudy skies), mirrors and concentration systems are mandatory to maximise c-Si PV cells performance¹.

One way to overcome these losses is by shaping the incident sunlight through the use of luminescent downshifting (LDS) layers⁴⁻⁵, a relatively direct and cost-effective method to improve conversion efficiency of PV cells. These converting layers are coatings directly applied on the PV cell surface that are able to absorb the incident radiation unused by the PV cell which is then re-emitted at a usable wavelength (or refracted towards the PV cell)⁶⁻⁷. Moreover, these LDS layers reveal analogous optical efficiency under diffuse or direct radiation, thus, providing analogous output under cloudy days, which does not happen for bare PV cells. Another factor which could affect the efficiency of PV cells is their surface reflection of incident solar radiation. Regarding this issue, these LDS layers may also act as an antireflective coating and increase the amount of absorbed photons⁸.

¹Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; ²Department of Electric and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; ³Department of Electronics, Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

*Correspondence: P S André, E-mail: paulo.andre@av.it.pt; R A S Ferreira, E-mail: rferreira@ua.pt

Received: 5 March 2019; Accepted: 24 April 2019; Published: 19 June 2019
Several studies showing improvements in solar cells performance with distinct LDS phosphors were reported, such as organic dyes8,16, quantum dots (QDs)9, and lanthanide ions (Ln$^{3+}$) coordination complexes$^{6,7,8,17-18}$. The reasons for the wide utilization of Ln$^{3+}$ complexes (euro- pium, Eu$^{3+}$, and terbium, Tb$^{3+}$) are related to their strong emission and photostability and also the emission profile in the visible spectral range, which overlaps the absorption of c-Si solar cells. Moreover, Eu$^{3+}$ and Tb$^{3+}$ based materials display significantly larger ligands-induced Stokes shifts, when compared to organic dyes or QDs, minimizing the losses by self-absorption19.

In this work, we report Eu$^{3+}$- and Tb$^{3+}$-doped organic-inorganic hybrids (e.g., the d-U(600) di-ureasil and the t-U(5000) tri-ureasil) to be used as LDS coatings on Si-based PV cells. The materials were chosen based on the fact that they have similar absorption range (in the UV spectral region) and large absolute emission quantum yield (Φ) values (>0.50), but present emission in distinct spectral regions. Two distinct strategies were adopted: (i) using the doped organic-inorganic hybrids coating as a substitute of the polymeric layer typically found on top of PV panels and (ii) depositing these materials as a coating directly on the top of PV cells in which the surface is sealed with polyethylene terephthalate polymer. The PV cells of approach (ii) were then attached to a small solar vehicle and its velocity was compared to one with a bare PV cell, in a horizontal plane.

Experimental section

Materials and methods

The diamine α,ω-diaminepoly (oxyethylene-co-oxypropylene) (ED-600, commercially named Jeffamine6 ED-600, Huntsman), 3-isocyanatopropyltriethoxysilane (ICPTES, 95%, Aldrich), salicylic acid (SA), sodium hydroxide (NaOH), tetrahydrofuran (THF, 99%, Sigma-Aldrich), absolute ethanol (EtOH, Sigma-Aldrich), eur- opium chloride (EuCl$_3$·6H$_2$O, 99%, Sigma-Aldrich), 2-thienyltrifluoracetone (Htta, Sigma-Aldrich) and hex- ane (≥95%, Sigma-Aldrich) are all commercially available. TbCl$_3$ aqueous solution (0.1 mol/L) was obtained by dissolving terbium oxide (Tb$_4$O$_7$) in hydrochloride acid (HCl), the remaining acid was removed by evaporation, and the resulting solid was dissolved in distilled water. All chemicals were used as received without purifications.

Synthesis of the d-U(600) doped with SA sensitized TbCl$_3$

For the case of Tb$^{3+}$-based organic-inorganic hybrids, a salicylic acid complex was used, since the use of SA as luminescence sensitizer for Ln$^{3+}$ ions was proved effective as reported in some studies, mainly for analytical chemistry20,21, and these complexes were also suggested for PV applications in luminescent solar concentrators (LSCs) when incorporated in a polymer host22. The use of Tb$^{3+}$-based complexes involving the SA ligand in silica-based sol-gel derived host materials has been tested with proved enhancement in the fluorescence intensity of Tb$^{3+}$ ions when these chelates were doped in silica gel glasses due to a decrease in non-radiative transitions23,24. The precursor d-uptes(600) was prepared according to the literature25. An amount of 1.371 mL (0.1371 mmol) of TbCl$_3$ was added to a beaker and dried at 95 °C to evaporate the water. Then 0.5 g (0.4566 mmol) of d-uptes(600) was added, followed by addition of 5 mL (or 10 mL) of EtOH. The mixture was stirred at room temperature to get a clear solution. Then 50 μL of 0.05 mol/L HCl was added and stirred at room temperature for 30 minutes. 56.7 mg (0.4105 mmol) of SA was added, stirred for some time, and finally 0.41 mL of 1.0 mol/L NaOH was added. The molar ratio of d-uptes(600):TbCl$_3$:SA:NaOH = 1.0:3.9:9:0.9. The d-U(600) organic-inorganic hybrid material doped with SA sensitized TbCl$_3$ will be hereafter designated as dU6-Tb.

Synthesis of the tripodal tri-ureasil, t-U(5000), organic-inorganic hybrid doped with Eu(tta)$_3$·2H$_2$O

The Eu(tta)$_3$·2H$_2$O complex was chosen because of its high 5D$_0$ quantum efficiency ($\Phi = 0.74$)26, that must correspond to one of the highest Φ values of hybrid materials as q is the theoretical maximum value for Φ. Moreover, after incorporation into the hybrid host, the water molecules coordinated to the Eu$^{3+}$ ions will be replaced by the oxygen atoms from the carbonyl groups of the urea cross linkages contributing to suppress the Eu$^{3+}$ emission quenching. In addition, this complex incorporated into hybrid matrices was already used for photovoltaic applications as optically active layers in LSCs$^{27-29}$. The precursor t-uptes(5000) was prepared according to the literature10 and the synthesis of the Eu(tta)$_3$·2H$_2$O complex is fully described elsewhere (ESI for details)20,29. The Eu(tta)$_3$·2H$_2$O complex was incorporated into the non-hydrolysed precursor, by using 30 mg of Eu(tta)$_3$·2H$_2$O complex dissolved in 1.12 mL of EtOH and added to 1.5 g of t-uptes(5000) in the presence of 2.0×10$^{-3}$ mL HCl (1 M). The t-U(5000) organic-inorganic hybrid material doped with the Eu(tta)$_3$·2H$_2$O complex will be hereafter designated as tU5-Eu.

LDS coatings fabrication

The dU6-Tb and tU5-Eu materials were deposited on the c-Si PV panels composed by 8 PV cells connected in series (KXOBB2-01X8F, IXYS, after removal of the ethylene-vinyl acetate coating), designated hereafter as PV-1, and on c-Si PV cells which were posteriorly attached to a wheeled structure which composes small solar vehicles (Solar Racer, Geo Kids), designated hereafter as PV-2, by spin-coating at 500 rpm, for 30 s, using a volume of 0.1 mL (PV-1) and 0.2 mL (PV-2). Then, the devices were kept in the oven at 45 °C for 48 h together with bare PV cells. The performance of the bare PV devices is not affected by this mild heat treatment (Fig. S1 in ESI). The synthesized luminescent materials were also deposited in
glass substrates using the same conditions for structural and optical characterization.

UV/visible absorption and reflectance

UV/visible absorption and reflectance spectra were measured using a Lambda 950 dual-beam spectrometer (Perkin-Elmer).

Optical microscopy

Optical microscopy was used to measure the coatings thickness using an Olympus BX51 brightfield microscope (10× objective), in the reflection mode, equipped with a hyperspectral imaging system (CytoViva Inc., Auburn, AL). The system integrates an optical imaging CCD camera (QImaging Retiga 4000R), a visible-near-infrared hyperspectral camera (CytoViva®), a motorized stage and a halogen light source (Fiber-lite®, DC-950). For the dU6-Tb and tU5-Eu, thickness values of 5.7±0.5 μm and 45±3 μm were measured, respectively (Fig. S2 in ESI). The differences in the thickness are due to the amount of solvent of the synthesis procedure for each sol, which determines their initial viscosity.

Photoluminescence spectroscopy

The photoluminescence spectra were recorded at room temperature with a modular double-grating excitation spectrofluorimeter with a TriaX 320 emission monochromator (Fluorolog-3, Horiba Scientific) coupled to an R928 Hamamatsu photomultiplier.

Absolute emission quantum yield

The absolute emission quantum yield values were measured using a Lambda 950 dual-beam spectrometer coupled to a monochromator (Horiba Scientific) with a Xenon lamp coupled to a monochromator (Fluorolog-3, Horiba Scientific) coupled to a TRIAX 180 emission monochromator (Horiba Scientific). The short-circuit current (Isc) and the incident power (Pinc) were measured using a sourcemeter device (2400 SourceMeter SMU Instruments, Keithley) and a Si calibrated photodiode (PDS1010, Thorlabs), respectively. The V-P curves were determined under AM1.5G simulated radiation (model 10500, Abet Technologies) using a semiconductor device analyzer (IB1500A, Keysight Technologies). The tolerance of the measured EQE and V-I curves of the PV devices (as received from the manufacturer) is 5%.

Solar car race

The PV-2 cells (2.4 cm × 2.7 cm) were coupled to a wheeled structure composing a small scale prototype solar-powered car, with dimension of 2.1 cm× 3.0 cm and 1.1×10⁻² W electrical motor. The electrical output power measured for all the PV-2 cells is the same. The solar race was performed on a plastic track with 1.2 m length and 2×10⁻² m width. The photo finish images were acquired with a smartphone camera with resolution of 1920 pixel×1080 pixel (424 ppi), aperture of f/2.0 and a sensor dimension of 1/3.0" with 1.12 μm pixel size. The time measurements were performed with a digital chronometer (NOVEDUC) with an infrared photocell, in 2 cm track pieces.

Results and discussion

Optical characterization

The LDS coatings produced in the scope of this work were deposited in the PV-1 and in PV-2 devices, revealing the materials’ emission under UV irradiation, Fig. 1 and Fig. S4 in ESI.

In particular, Fig. 2(a) shows the room-temperature emission spectra of the LDS coatings excited at the wavelength that maximizes the emission intensity. The emission spectra of dU6-Tb and tU5-Eu display the 5D4→7F0, 7F1, 7F2, and 7F3 transitions, respectively. In both cases, the absence of ligands and hybrids intrinsic emission indicates effective energy transfer to the Ln³⁺ ions, as demonstrated in the excitation spectra.

The excitation spectra were monitored at the transitions above mentioned, Fig. 2(a). For dU6-Tb, the spectra present three main components ascribed to the SA organic ligand (~240 nm and ~290 nm) and to the
d-U(600) host (~350 nm). For tU5-Eu the spectrum shows three main components peaking at 270, 320 and 365 nm, mainly ascribed to the hybrid host and to the tta triplet states, respectively. The 320 and 365 nm components resemble those already observed for isolated Eu(tta)₃∙2H₂O and for organic-inorganic hybrids incorporating Eu(tta)₃∙2H₂O and Eu(tta)(phen) (phen=1,10-phenanthroline), being ascribed to the \(\pi-\pi^* \) electronic transition of the organic ligands. Apart from changes in the relative intensity, the UV-visible absorption spectra, Fig. 2(b), reveal the same components detected in excitation spectra.

Featuring PV related applications, and in order to maximize the performance of LSCs, it is relevant to quantify the light harvesting ability, which can be done by estimating the overlap integral between the materials absorbance and the sunlight available for PV conversion. The overlap integral, presented in Fig. 2(b), is given by:

\[
O = \int_{\lambda_1}^{\lambda_2} \Phi_{AM1.5G}(\lambda) \times (1 - 10^{-A(\lambda)}) \, d\lambda, \quad (3)
\]

where \(\lambda_1 \) and \(\lambda_2 \) are the limits of the spectral overlap between the absorption spectrum of dU6-Tb and tU5-Eu and the AM1.5G spectrum, \(\Phi_{AM1.5G} \) is the AM1.5G photon flux and \(A \) is the absorbance of tU5-Eu and dU6-Tb. A value of \(8.8 \times 10^{18} \) photons\(\cdot \)s\(^{-1}\)\(\cdot \)m\(^{-2}\)\(\cdot \)nm\(^{-1}\) was found for dU6-Tb and for tU5-Eu, the value was \(6.8 \times 10^{18} \) photons\(\cdot \)s\(^{-1}\)\(\cdot \)m\(^{-2}\)\(\cdot \)nm\(^{-1}\).

These values indicate that these LDS coatings have, respectively, the potential to absorb ~0.2% and ~1.6% of the solar photon flux on the Earth surface (4.3\(\times \)10\(^{21} \) photons\(\cdot \)s\(^{-1}\)\(\cdot \)m\(^{-2}\)\(\cdot \)nm\(^{-1}\)).

The emission properties of the LDS coatings were further quantified through the measurement of the absolute \(\Phi \) values, with maxima for dU6-Tb of 0.55\(\pm \)0.06 (350 nm) and 0.56\(\pm \)0.06 (320 nm) for tU5-Eu. The values found for the Eu\(^{3+}\)-based organic-inorganic hybrid materials are of the same order of magnitude of the ones previously reported, being remarkable the value here reported for dU6-Tb, higher than the 0.25 and 0.32 values found for Ln\(^{3+}\) coordination polymers doped with Tb\(^{3+}\) and that of bipyridine-based bridged silsesquioxanes and d-U(600) organic-inorganic hybrids containing Tb\(^{3+}\) with maximum absolute \(\Phi \) values of 0.12\(\pm \)0.01 and 0.11\(\pm \)0.01, respectively.

The effect of the coating on the surface reflection of the PV cells may be quantified by the Haze factor. The Haze factor refers to the degree of incident light scattered forward towards the absorber layer. It can be described by the ratio between the diffuse reflectance (\(R_{\text{diffuse}} \)) and total reflectance (\(R_{\text{total}} \)):

\[
Haze = \frac{R_{\text{diffuse}}}{R_{\text{total}}}, \quad (4)
\]
Larger Haze values correspond to increased scattering and hence an increased optical path length, which is of critical importance to improve light absorption40,41. Thus, considering this aspect, the LDS coatings presented here are good candidates to be used in PV cells. As evidenced in Fig. 3, the total reflectance of the bare PV devices is always higher than the diffuse one. After the deposition, the diffuse and total reflectance curves come closer, meaning that the specular component of the reflectance is decreased. Therefore, it is expected an increase in the Haze factor for all the coatings considering the 300 to 800 nm spectral range.

The active role of the mentioned LDS coatings in enhancing the PV device performance was inferred from the EQE curves of PV-1 and PV-2 devices with and without the presence of the LDS coatings. An enhancement of the PV cell performance in the UV spectral region was verified for all the PV devices with the LDS coatings, Fig. 4.

As shown in Fig. 4, an increase in the EQE is noticeable in the UV/blue region between 300 and 360 nm, which is the spectral range where Si PV cells have lower performance and, also, corresponds to the maximum absorption region of the produced LDS coatings. We note that PV cells coated with a non-doped hybrid layer yield no changes in the PV performance (Fig. S5 in ESI) reinforcing that the main contribution for such PV cells enhancement in the presence of the LDS coatings arises from the UV-down-shifted converted photons. In particular, a maximum absolute increase of \sim27% was found for the dU6-Tb LDS coating (for 320 nm incident radiation) on PV-2 (Table 1), resulting from a relative increase of \sim4 in the I_{sc} in the same range (Fig. S6 in ESI). The V-P curves of all solar devices (Fig. 5) were measured under AM1.5G illumination, and the relative increase of the electrical power generated by the PV cell with the LDS coating was inferred through:

$$\Delta P = \frac{\int_{0}^{\infty} P_{\text{coated}}(dV) - \int_{0}^{\infty} P_{\text{bare}}(dV)}{\int_{0}^{\infty} P_{\text{coated}}(dV)} \times 100 \%, \quad (5)$$
in which \(V_{oc} \) is the open-circuit voltage of the PV device, \(P_{\text{rated}} \) is the power generated by the PV device with the LDS coating and \(P_{\text{bare}} \) is the power generated by the bare PV device. The maximum power relative increase value was 9%, found for PV-2 with tU5-Eu LDS coating, Fig. 5(b), comparing with the values of 7% and 2% found for PV-1 with the dU6-Tb and tU5-Eu LDS coatings, respectively. For the PV-2 device with the dU6-Tb LDS coating, a decrease of 11% was verified, probably due to the fact of the dU6-Tb emission being less resonant with Si absorption, when compared to the tU5-Eu case. The fact that this is not happening for the PV-1 cases, may be caused by the differences in the surface reflectance of the bare PV cell, which is higher for the PV-2 cases.

These results are very promising and among the highest values reported for Ln\(^{3+}\)-based LDS coatings\(^ {19,42} \) mentioned in Table 1, except for the case of a LDS layer based on Eu(tta)\(_3\) \(\cdot \) \(2 \)H\(_2\)O complex with 4,5-bis(pinene)-2,2'-bipyridine ligand dispersed in polyvinyl acetate (PVA), which presented an absolute EQE increase of \(\sim 50\% \)\(^ {13} \).

Table 1 | Reported absolute EQE increase in the UV spectral region for Ln\(^{3+}\)-based LDS coatings.

<table>
<thead>
<tr>
<th>Optically active layer</th>
<th>PV device</th>
<th>EQE increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>dU6-Tb [this work]</td>
<td>PV-1</td>
<td>19%</td>
</tr>
<tr>
<td>tU5-Eu [this work]</td>
<td>PV-1</td>
<td>17%</td>
</tr>
<tr>
<td>dU6-Tb [this work]</td>
<td>PV-2</td>
<td>27%</td>
</tr>
<tr>
<td>tU5-Eu [this work]</td>
<td>PV-2</td>
<td>23%</td>
</tr>
<tr>
<td>Eu-doped phosphor/Ag nanoparticles/SiO(_2) (^6)</td>
<td>PV-2</td>
<td>12%</td>
</tr>
<tr>
<td>Eu-doped phosphor/ SiO(_2) (^7)</td>
<td>c-Si</td>
<td>8%</td>
</tr>
<tr>
<td>Eu-doped phosphor/ SiO(_2) (^6)</td>
<td>PV-2</td>
<td>7%</td>
</tr>
<tr>
<td>Eu-doped phosphor/ SiO(_2) (^12)</td>
<td>PV-2</td>
<td>10%</td>
</tr>
<tr>
<td>[Eu(tta)(_2)tppo] (_2)/EVA (^{18})</td>
<td>PV-2</td>
<td>19%</td>
</tr>
<tr>
<td>Eu(tta)(_2)phen/EVA (^{19})</td>
<td>c-Si</td>
<td>17%</td>
</tr>
<tr>
<td>[EuL(_3)]/EVA (^{19})</td>
<td>c-Si</td>
<td>15%</td>
</tr>
<tr>
<td>[TbL(_3)]/EVA (^{19})</td>
<td>c-Si</td>
<td>15%</td>
</tr>
<tr>
<td>[Eu(tta)(_2)bpbpy/PVA (^{13})</td>
<td>c-Si</td>
<td>50%</td>
</tr>
<tr>
<td>[Eu(tfc)(_2)EABP] 1:1/EVA (^{16})</td>
<td>c-Si</td>
<td>5%</td>
</tr>
<tr>
<td>[Eu(tfc)(_2)Eu(dbm):phen]/PVA (^{15})</td>
<td>c-Si</td>
<td>5%</td>
</tr>
<tr>
<td>Ba(_2)SiO(2)Eu({0.1})</td>
<td>DSSC</td>
<td>3%</td>
</tr>
<tr>
<td>SiO(_2)/Ba(_2)SiO(2)/Eu({0.1})</td>
<td>DSSC</td>
<td>3%</td>
</tr>
<tr>
<td>LaVO(4)/Dy({0.1})</td>
<td>DSSC</td>
<td>2%</td>
</tr>
<tr>
<td>EuD(_4)TEA (^{42})</td>
<td>DSSC</td>
<td>25%</td>
</tr>
</tbody>
</table>

EVA=ethylene-vinyl acetate; PVA=polyvinyl acetate; tppo=triphenylphosphine oxide; phen=1,10-phenanthroline; L=triazole-pyridine-bistetrazolate; bpbpy=4,5-bis(pinene)-2,2'-bipyridine; Eu(tfc)=tris[3-(trifluoromethylhydroxymethilene)-d-camphorate]europium(III); EABP=4,4'-(bis(diethylamino)benzophenone; dbm=dibenzoylmethane; EuO\(_4\)TEA=europium tetraakis dibenzoylmethide triethyammonium; DSSC=dye-sensitized solar cell.

To illustrate the concept of enhancing PV cells performance using LDS coatings, the PV-2 devices were coupled to a wheeled structure composing a small solar vehicle, and a race between solar vehicles with bare and coated PV-2 devices was performed in horizontal plane (Fig. 6 and Fig. S7 in ESI). For this test, the tU5-Eu LDS coating was chosen due to the presented relative gain in the delivered power compared with the bare cell. The solar vehicle using the tU5-Eu LDS coating was the winner, with a relative increase in the velocity of ~9% compared with the device with the bare PV-2, which is similar to the power relative increase value above mentioned. Moreover, if we consider the EQE curve of this device and estimate the relative EQE increase over the AM1.5G spectra (in the 300 to 800 nm spectral range), through:

\[
\Delta \text{EQE}_{\text{AM1.5G}} = 100 \times \left[1 - \frac{\int_{300}^{800} \text{EQE}_{\text{coated}}(\lambda) \times I_{\text{AM1.5G}}(\lambda) \, d\lambda}{\int_{300}^{800} \text{EQE}_{\text{bare}}(\lambda) \times I_{\text{AM1.5G}}(\lambda) \, d\lambda} \right], \tag{6}
\]

in which \(\text{EQE}_{\text{coated}} \) is the EQE of the PV device with the LDS coating and \(\text{EQE}_{\text{bare}} \) is the EQE of the bare PV device, we found a value of ~9% (Table S1 in ESI) in good agreement with the velocity and relative power increase, suggesting that the verified increase in the velocity of the solar vehicle with the coated PV cell is due to an efficient UV to visible photon conversion performed by the tU5-Eu LDS coating.

Conclusions
In this work, luminescent downshifting (LDS) coatings

![Fig. 6](image-url)
based on Eu$^{3+}$ and Tb$^{3+}$-doped organic-inorganic hybrid materials are reported. These materials are able to absorb the UV component of the solar irradiance on Earth (absorption at 300–400 nm) and present emission in the visible spectral regions. The performance of the LDS coating coupled to a c-Si PV cell was evaluated and a maximum absolute increase in the PV cell external quantum efficiency of ~27% was observed between 300 and 400 nm. The concept and applicability of these LDS coatings were visually proved by a race between small solar vehicles with bare and coated PV cells, in which the solar car with the Eu$^{3+}$-based LDS coating on the PV cell presented a relative increase in the velocity of ~9%, comparing with the one with the bare PV cell. These LDS layers proved its ability to be used in c-Si solar cells which are still the most common technology in use but they may also be used in perovskite-based technologies which, although not commercially available, are worth noting. In general, both these types of PV cells present low spectral response in the UV spectral region and thus, the UV LDS layers presented here may be suitable and advantageous.

References

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, (UID/CTM/50011/2019), Instituto de Telecomunicações (UID/EIA/50008/2019), Solar-Flex (CENTRO-01-0145-FEDER-030186), and SunPhotoSolutions (CENTRO-01-0145-FEDER-000005) financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership through European Regional Development Fund (ERDF) in the frame of Operational Competitiveness and Internationalization Programme (POCI). L. S. F. and A. R. N. B. thank WINLEDs (POCI-01-0145-FEDER-030351) and NanoHeatControl (POCI-01-0145-FEDER-031469), respectively. Joaquim Almeida from Escola Secundária de Oliveira do Bairro, Portugal is acknowledged for providing the photo finish images.

Author contributions

R. A. S. F., P. S. A., L. D. C. and S. F. H. C. designed the experiments, interpreted the data and co-wrote the paper. L. S. F., S. F. H. C. and A. R. N. B. carried out the synthesis, characterization, optical measurements and data analysis.

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information for this paper is available at https://doi.org/10.29026/oea.2019.190006