Darian SB, Oh J, Paulson B et al. Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations. Opto-Electron Adv 8, 240311 (2025). doi: 10.29026/oea.2025.240311
Citation: Darian SB, Oh J, Paulson B et al. Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations. Opto-Electron Adv 8, 240311 (2025). doi: 10.29026/oea.2025.240311

Article Open Access

Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations

More Information
  • We developed an imaging technique combining two-photon computed super-resolution microscopy and suction-based stabilization to achieve the resolution of the single-cell level and organelles in vivo. To accomplish this, a conventional two-photon microscope was equipped with a 3D-printed holders, which stabilize the tissue surface within the focal plane of immersion objectives. Further computational image stabilization and noise reduction were applied, followed by super-resolution radial fluctuations (SRRF) analysis, doubling image resolution, and enhancing signal-to-noise ratios for in vivo subcellular process investigation. Stabilization of < 1 µm was obtained by suction, and < 25 nm were achieved by subsequent algorithmic image stabilization. A Mito-Dendra2 mouse model, expressing green fluorescent protein (GFP) in mitochondria, demonstrated the potential of long-term intravital subcellular imaging. In vivo mitochondrial fission and fusion, mitochondrial status migration, and the effects of alcohol consumption (modeled as an alcoholic liver disease) and berberine treatment on hepatocyte mitochondrial dynamics are directly observed intravitally. Suction-based stabilization in two-photon intravital imaging, coupled with computational super-resolution holds promise for advancing in vivo subcellular imaging studies.
  • 加载中
  • [1] Hoole S. The Select Works of Antony Van Leeuwenhoek (Henry Fry, London, 1798).

    Google Scholar

    [2] Pittet MJ, Weissleder R. Intravital imaging. Cell 147, 983–991 (2011). doi: 10.1016/j.cell.2011.11.004

    CrossRef Google Scholar

    [3] Saxena M, Eluru G, Gorthi SS. Structured illumination microscopy. Adv Opt Photon 7, 241–275 (2015). doi: 10.1364/AOP.7.000241

    CrossRef Google Scholar

    [4] Scheele CLGJ, Herrmann D, Yamashita E et al. Multiphoton intravital microscopy of rodents. Nat Rev Methods Primers 2, 89 (2022). doi: 10.1038/s43586-022-00168-w

    CrossRef Google Scholar

    [5] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027

    CrossRef Google Scholar

    [6] Hong H, Wu CC, Zhao ZX et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat Photon 15, 510–515 (2021). doi: 10.1038/s41566-021-00801-2

    CrossRef Google Scholar

    [7] Xia F, Wu CY, Sinefeld D et al. In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. Biomed Opt Express 9, 6545–6555 (2018). doi: 10.1364/BOE.9.006545

    CrossRef Google Scholar

    [8] Xu X, Luo Q, Wang JX et al. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution. Opto-Electron Adv 7, 230212 (2024). doi: 10.29026/oea.2024.230212

    CrossRef Google Scholar

    [9] Liu S, Hoess P, Ries J. Super-resolution microscopy for structural cell biology. Annu Rev Biophys 51, 301–326 (2022). doi: 10.1146/annurev-biophys-102521-112912

    CrossRef Google Scholar

    [10] Huang YR, Zhang ZM, Tao WL et al. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome. Opto-Electron Adv 7, 240035 (2024). doi: 10.29026/oea.2024.240035

    CrossRef Google Scholar

    [11] Bon P, Linarès-Loyez J, Feyeux M et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat Methods 15, 449–454 (2018). doi: 10.1038/s41592-018-0005-3

    CrossRef Google Scholar

    [12] Culley S, Tosheva KL, Pereira PM et al. SRRF: universal live-cell super-resolution microscopy. Int J Biochem Cell Biol 101, 74–79 (2018). doi: 10.1016/j.biocel.2018.05.014

    CrossRef Google Scholar

    [13] Gustafsson N, Culley S, Ashdown G et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7, 12471 (2016). doi: 10.1038/ncomms12471

    CrossRef Google Scholar

    [14] Laine RF, Tosheva KL, Gustafsson N et al. NanoJ: a high-performance open-source super-resolution microscopy toolbox. J Phys D: Appl Phys 52, 163001 (2019). doi: 10.1088/1361-6463/ab0261

    CrossRef Google Scholar

    [15] Bond C, Santiago-Ruiz AN, Tang Q et al. Technological advances in super-resolution microscopy to study cellular processes. Mol Cell 82, 315–332 (2022). doi: 10.1016/j.molcel.2021.12.022

    CrossRef Google Scholar

    [16] Nguyen HTT, Kang SH. Base pair distance in single‐DNA molecule via TIRF‐based super‐resolution radial fluctuations‐stream module. Bull Korean Chem Soc 41, 476–479 (2020). doi: 10.1002/bkcs.11982

    CrossRef Google Scholar

    [17] Lee YH, Zhang S, Mitchell CK et al. Calcium imaging with super-resolution radial fluctuations. Biosci Bioeng 4, 78–84 (2018).

    Google Scholar

    [18] Zhang JB, Li N, Dong FH et al. Ultrasound microvascular imaging based on super‐resolution radial fluctuations. J Ultrasound Med 39, 1507–1516 (2020). doi: 10.1002/jum.15238

    CrossRef Google Scholar

    [19] Stubb A, Laine RF, Miihkinen M et al. Fluctuation-based super-resolution traction force microscopy. Nano Lett 20, 2230–2245 (2020). doi: 10.1021/acs.nanolett.9b04083

    CrossRef Google Scholar

    [20] Soulet D, Lamontagne‐Proulx J, Aubé B et al. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 278, 3–17 (2020). doi: 10.1111/jmi.12880

    CrossRef Google Scholar

    [21] Vinegoni C, Lee S, Aguirre AD et al. New techniques for motion-artifact-free in vivo cardiac microscopy. Front Physiol 6, 147 (2015).

    Google Scholar

    [22] Warren SC, Nobis M, Magenau A et al. Removing physiological motion from intravital and clinical functional imaging data. eLife 7, e35800 (2018). doi: 10.7554/eLife.35800

    CrossRef Google Scholar

    [23] Lee S, Nakamura Y, Yamane K et al. Image stabilization for in vivo microscopy by high-speed visual feedback control. IEEE Trans Robot 24, 45–54 (2008). doi: 10.1109/TRO.2007.914847

    CrossRef Google Scholar

    [24] Lee S, Ozaki T, Nakamura Y. In vivo microscope image stabilization through 3-D motion compensation using a contact-type sensor. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 1192–1197 (IEEE, 2008). http://doi.org/10.1109/IROS.2008.4651123.

    Google Scholar

    [25] Vinegoni C, Lee S, Feruglio PF et al. Advanced motion compensation methods for intravital optical microscopy. IEEE J Sel Top Quantum Electron 20, 6800709 (2014).

    Google Scholar

    [26] Reichenspurner H, Detter C, Deuse T et al. Video and robotic-assisted minimally invasive mitral valve surgery: a comparison of the Port-Access and transthoracic clamp techniques. Ann Thorac Surg 79, 485–490 (2005). doi: 10.1016/j.athoracsur.2004.06.120

    CrossRef Google Scholar

    [27] Lee S, Vinegoni C, Feruglio PF et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat Commun 3, 1054 (2012). doi: 10.1038/ncomms2060

    CrossRef Google Scholar

    [28] Aguirre AD, Vinegoni C, Sebas M et al. Intravital imaging of cardiac function at the single-cell level. Proc Natl Acad Sci USA 111, 11257–11262 (2014). doi: 10.1073/pnas.1401316111

    CrossRef Google Scholar

    [29] Vinegoni C, Lee S, Gorbatov R et al. Motion compensation using a suctioning stabilizer for intravital microscopy. Intravital 1, 115–121 (2012). doi: 10.4161/intv.23017

    CrossRef Google Scholar

    [30] Kim Y, Cho M, Paulson B et al. Minimizing motion artifacts in intravital microscopy using the sedative effect of dexmedetomidine. Microsc Microanal 28, 1679–1686 (2022). doi: 10.1017/S1431927622000708

    CrossRef Google Scholar

    [31] Kiryu S, Sundaram T, Kubo S et al. MRI assessment of lung parenchymal motion in normal mice and transgenic mice with sickle cell disease. J Magn Reson Imaging 27, 49–56 (2008). doi: 10.1002/jmri.21035

    CrossRef Google Scholar

    [32] Presson RG Jr, Brown MB, Fisher AJ et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am J Pathol 179, 75–82 (2011). doi: 10.1016/j.ajpath.2011.03.048

    CrossRef Google Scholar

    [33] Terry RJ. A thoracic window for observation of the lung in a living animal. Science 90, 43–44 (1939). doi: 10.1126/science.90.2324.43

    CrossRef Google Scholar

    [34] Looney MR, Thornton EE, Sen D et al. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8, 91–96 (2011). doi: 10.1038/nmeth.1543

    CrossRef Google Scholar

    [35] Kim JK, Lee WM, Kim P et al. Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals. Nat Protoc 7, 1456–1469 (2012). doi: 10.1038/nprot.2012.078

    CrossRef Google Scholar

    [36] Rodriguez-Tirado C, Kitamura T, Kato Y et al. Long-term high-resolution intravital microscopy in the lung with a vacuum stabilized imaging window. J Vis Exp 116, 54603 (2016). doi: 10.3791/54603

    CrossRef Google Scholar

    [37] Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell 61, 683–694 (2016). doi: 10.1016/j.molcel.2016.02.022

    CrossRef Google Scholar

    [38] Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012). doi: 10.1126/science.1219855

    CrossRef Google Scholar

    [39] van der Bliek AM, Shen QF, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5, a011072 (2013).

    Google Scholar

    [40] Song ZY, Ghochani M, McCaffery JM et al. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20, 3525–3532 (2009). doi: 10.1091/mbc.e09-03-0252

    CrossRef Google Scholar

    [41] López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev 162, 108–121 (2017). doi: 10.1016/j.mad.2016.12.005

    CrossRef Google Scholar

    [42] Jheng HF, Tsai PJ, Guo SM et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32, 309–319 (2012). doi: 10.1128/MCB.05603-11

    CrossRef Google Scholar

    [43] Duraisamy AJ, Mohammad G, Kowluru RA. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochim Biophys Acta (BBA)-Mol Basis Dis 1865, 1617–1626 (2019). doi: 10.1016/j.bbadis.2019.03.013

    CrossRef Google Scholar

    [44] Babayeva A. Změny mitochondriálního metabolismu u nádorových buněk (2023).

    Google Scholar

    [45] Cederbaum AI, Lu YK, Wu DF. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83, 519–548 (2009). doi: 10.1007/s00204-009-0432-0

    CrossRef Google Scholar

    [46] Guo FF, Zheng K, Benedé‐Ubieto R et al. The Lieber‐DeCarli Diet—a flagship model for experimental alcoholic liver disease. Alcohol Clin Exp Res 42, 1828–1840 (2018). doi: 10.1111/acer.13840

    CrossRef Google Scholar

    [47] Ghosh Dastidar S, Warner JB, Warner DR et al. Rodent models of alcoholic liver disease: role of binge ethanol administration. Biomolecules 8, 3 (2018). doi: 10.3390/biom8010003

    CrossRef Google Scholar

    [48] Tillhon M, Ortiz LMG, Lombardi P et al. Berberine: new perspectives for old remedies. Biochem Pharmacol 84, 1260–1267 (2012). doi: 10.1016/j.bcp.2012.07.018

    CrossRef Google Scholar

    [49] Yan XJ, Yu X, Wang XP et al. Mitochondria play an important role in the cell proliferation suppressing activity of berberine. Sci Rep 7, 41712 (2017). doi: 10.1038/srep41712

    CrossRef Google Scholar

    [50] Schindelin J, Arganda-Carreras I, Frise E et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012). doi: 10.1038/nmeth.2019

    CrossRef Google Scholar

    [51] Mannam V, Zhang YD, Zhu YH et al. Real-time image denoising of mixed Poisson–Gaussian noise in fluorescence microscopy images using ImageJ. Optica 9, 335–345 (2022). doi: 10.1364/OPTICA.448287

    CrossRef Google Scholar

    [52] Culley S, Albrecht D, Jacobs C et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15, 263–266 (2018). doi: 10.1038/nmeth.4605

    CrossRef Google Scholar

    [53] Kim E, Lee S, Park SB. A Seoul-Fluor-based bioprobe for lipid droplets and its application in image-based high throughput screening. Chem Commun 48, 2331–2333 (2012). doi: 10.1039/c2cc17496k

    CrossRef Google Scholar

    [54] Lee Y, Na S, Lee S et al. Optimization of Seoul-Fluor-based lipid droplet bioprobes and their application in microalgae for bio-fuel study. Mol BioSyst 9, 952–956 (2013). doi: 10.1039/c2mb25479d

    CrossRef Google Scholar

    [55] Kirpich I, Ghare S, Zhang J W et al. Binge alcohol–induced microvesicular liver steatosis and injury are associated with down‐regulation of hepatic Hdac 1, 7, 9, 10, 11 and up‐regulation of Hdac 3. Alcohol Clin Exp Res 36, 1578–1586 (2012).

    Google Scholar

    [56] Bertola A, Mathews S, Ki SH et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8, 627–637 (2013). doi: 10.1038/nprot.2013.032

    CrossRef Google Scholar

    [57] Lefebvre AEYT, Ma D, Kessenbrock K et al. Author correction: automated segmentation and tracking of mitochondria in live-cell time-lapse images. Nat Methods 19, 770 (2022).

    Google Scholar

    [58] Valente AJ, Maddalena LA, Robb EL et al. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119, 315–326 (2017). doi: 10.1016/j.acthis.2017.03.001

    CrossRef Google Scholar

    [59] Zhang PC, Ma DS, Wang YC et al. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol 74, 225–232 (2014). doi: 10.1016/j.fct.2014.10.005

    CrossRef Google Scholar

    [60] Xu LL, Zheng X, Wang YH et al. Berberine protects acute liver failure in mice through inhibiting inflammation and mitochondria-dependent apoptosis. Eur J Pharmacol 819, 161–168 (2018). doi: 10.1016/j.ejphar.2017.11.013

    CrossRef Google Scholar

    [61] Zhou R, Lin JJ, Wu DF. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim Biophys Acta (BBA)-Gen Subj 1840, 209–218 (2014). doi: 10.1016/j.bbagen.2013.09.018

    CrossRef Google Scholar

    [62] Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180, 31–43 (2014).

    Google Scholar

    [63] Banterle N, Bui KH, Lemke EA et al. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183, 363–367 (2013). doi: 10.1016/j.jsb.2013.05.004

    CrossRef Google Scholar

    [64] Koho S, Tortarolo G, Castello M et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat Commun 10, 3103 (2019). doi: 10.1038/s41467-019-11024-z

    CrossRef Google Scholar

    [65] Woolrich MW, Ripley BD, Brady M et al. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001). doi: 10.1006/nimg.2001.0931

    CrossRef Google Scholar

    [66] Lieber CS, DeCarli LM. Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol 24, 197–211 (1989).

    Google Scholar

    [67] Lefebvre AEYT, Ma D, Kessenbrock K et al. Automated segmentation and tracking of mitochondria in live-cell time-lapse images. Nat Methods 18, 1091–1102 (2021). doi: 10.1038/s41592-021-01234-z

    CrossRef Google Scholar

    [68] Carvalho JCO, Palero JA, Jurna M. Real-time imaging of suction blistering in human skin using optical coherence tomography. Biomed Opt Express 6, 4790–4795 (2015). doi: 10.1364/BOE.6.004790

    CrossRef Google Scholar

    [69] Shimizu K, Higuchi Y, Kozu Y et al. Development of a suction device for stabilizing in vivo real-time imaging of murine tissues. J Biosci Bioeng 112, 508–510 (2011). doi: 10.1016/j.jbiosc.2011.07.015

    CrossRef Google Scholar

    [70] Uechi M, Asai K, Osaka M et al. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsα. Circ Res 82, 416–423 (1998). doi: 10.1161/01.RES.82.4.416

    CrossRef Google Scholar

    [71] Wackenfors A, Sjögren J, Gustafsson R et al. Effects of vacuum‐assisted closure therapy on inguinal wound edge microvascular blood flow. Wound Repair Regener 12, 600–606 (2004). doi: 10.1111/j.1067-1927.2004.12602.x

    CrossRef Google Scholar

    [72] Smyth CN. Effect of suction on blood-flow in ischæmic limbs. Lancet 294, 657–659 (1969). doi: 10.1016/S0140-6736(69)90373-0

    CrossRef Google Scholar

    [73] Paulson B, Darian SB, Kim Y et al. Spectral multiplexing of fluorescent endoscopy for simultaneous imaging with multiple fluorophores and multiple fields of view. Biosensors 13, 33 (2022). doi: 10.3390/bios13010033

    CrossRef Google Scholar

    [74] You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol 70, 237–248 (2019). doi: 10.1016/j.jhep.2018.10.037

    CrossRef Google Scholar

    [75] Tilg H, Moschen AR, Kaneider NC. Pathways of liver injury in alcoholic liver disease. J Hepatol 55, 1159–1161 (2011). doi: 10.1016/j.jhep.2011.05.015

    CrossRef Google Scholar

    [76] Lieber CS, Rubin E, DeCarli LM. Hepatic microsomal ethanol oxidizing system (MEOS): differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem Biophys Res Commun 40, 858–865 (1970). doi: 10.1016/0006-291X(70)90982-4

    CrossRef Google Scholar

    [77] Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26, 173–179 (2011). doi: 10.1111/j.1440-1746.2010.06592.x

    CrossRef Google Scholar

    [78] Ke XM, Zhang RY, Li P et al. Hydrochloride Berberine ameliorates alcohol-induced liver injury by regulating inflammation and lipid metabolism. Biochem Biophys Res Commun 610, 49–55 (2022). doi: 10.1016/j.bbrc.2022.04.009

    CrossRef Google Scholar

    [79] Hori I, Harashima H, Yamada Y. Development of a mitochondrial targeting lipid nanoparticle encapsulating berberine. Int J Mol Sci 24, 903 (2023). doi: 10.3390/ijms24020903

    CrossRef Google Scholar

    [80] Yu WL, Sheng MW, Xu RB et al. Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J Transl Med 11, 24 (2013). doi: 10.1186/1479-5876-11-24

    CrossRef Google Scholar

    [81] Rosen M, Hillard EK. The use of suction in clinical medicine. Br J Anaesth 32, 486–504 (1960). doi: 10.1093/bja/32.10.486

    CrossRef Google Scholar

  • Supplementary information for Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on Super-Resolution Radial Fluctuations
    Supplementary Movie 1
    Supplementary Movie 2
    Supplementary Movie 3
    Supplementary Movie 4
    Supplementary Movie 5
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint