Wang SL, Shan YD, Zheng DH, Liu SG, Bo F et al. The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility. Opto-Electron Adv 5, 210135 (2022). doi: 10.29026/oea.2022.210135
Citation: Wang SL, Shan YD, Zheng DH, Liu SG, Bo F et al. The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility. Opto-Electron Adv 5, 210135 (2022). doi: 10.29026/oea.2022.210135

Original Article Open Access

The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility

More Information
  • Holographic display has attracted widespread interest because of its ability to show the complete information of the object and bring people an unprecedented sense of presence. The absence of ideal recording materials has hampered the realization of their commercial applications. Here we report that the response time of a bismuth and magnesium co-doped lithium niobate (LN:Bi,Mg) crystal is shortened to 7.2 ms and a sensitivity as high as 646 cm/J. The crystal was used to demonstrate a real-time holographic display with a refresh rate of 60 Hz, as that of the popular high-definition television. Moreover, the first-principles calculations indicate that the electron mobility while Bi occupying Nb-site is significantly greater than that in Li-site, which directly induces the fast response of LN:Bi,Mg crystals when the concentration of Mg is above its doping threshold.
  • 加载中
  • [1] Park J, Lee KR, Park YK. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat Commun 10, 1034 (2019). doi: 10.1038/s41467-019-08618-y

    CrossRef Google Scholar

    [2] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [3] Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H et al. Projection-type see-through holographic three-dimensional display. Nat Commun 7, 12954 (2016). doi: 10.1038/ncomms12954

    CrossRef Google Scholar

    [4] Matharu AS, Jeeva S, Ramanujam PS. Liquid crystals for holographic optical data storage. Chem Soc Rev 36, 1868–1880 (2007). doi: 10.1039/b706242g

    CrossRef Google Scholar

    [5] Zhang CL, Zhang DF, Bian ZP. Dynamic full-color digital holographic 3D display on single DMD. Opto-Electron Adv 4, 200049 (2021). doi: 10.29026/oea.2021.200049

    CrossRef Google Scholar

    [6] Yu H, Lee KR, Park J, Park YK. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat Photonics 11, 186–192 (2017). doi: 10.1038/nphoton.2016.272

    CrossRef Google Scholar

    [7] Tay S, Blanche PA, Voorakaranam R, Tunç AV, Lin W et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008). doi: 10.1038/nature06596

    CrossRef Google Scholar

    [8] Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010). doi: 10.1038/nature09521

    CrossRef Google Scholar

    [9] Li X, Li Y, Xiang Y, Rong N, Zhou PC et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Opt Express 24, 8824–8831 (2016). doi: 10.1364/OE.24.008824

    CrossRef Google Scholar

    [10] Wan WQ, Qiao W, Huang WB, Zhu M, Ye Y et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD. Opt Express 25, 1114–1122 (2017). doi: 10.1364/OE.25.001114

    CrossRef Google Scholar

    [11] Kozanecka-Szmigiel A, Rutkowska KA, Nieborek M, Kwasny M, Karpierz MA et al. Photopatterned azo poly (amide imide) layers as aligning substrates of holographic liquid crystal diffraction gratings for beam steering applications. J Mater Chem C 8, 968–976 (2020). doi: 10.1039/C9TC04296B

    CrossRef Google Scholar

    [12] Zhou PC, Li Y, Li X, Liu SX, Su YK. Holographic display and storage based on photo-responsive liquid crystals. Liq Cryst Rev 4, 83–100 (2016). doi: 10.1080/21680396.2016.1233079

    CrossRef Google Scholar

    [13] Zhao H, Lian C, Huang F, Xue TY, Sun XD et al. Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells. Appl Phys Lett 101, 211118 (2012). doi: 10.1063/1.4767444

    CrossRef Google Scholar

    [14] Jiang AQ, Geng WP, Lv P, Hong JW, Jiang J et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater 19, 1188–1194 (2020). doi: 10.1038/s41563-020-0702-z

    CrossRef Google Scholar

    [15] Kong YF, Bo F, Wang WW, Zheng DH, Liu HD et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv Mater 32, 1806452 (2020). doi: 10.1002/adma.201806452

    CrossRef Google Scholar

    [16] Kösters M, Sturman B, Werheit P, Haertle D, Buse K. Optical cleaning of congruent lithium niobate crystals. Nat Photonics 3, 510–513 (2009). doi: 10.1038/nphoton.2009.142

    CrossRef Google Scholar

    [17] Muñoz-Martínez JF, Alcázar Á, Carrascosa M. Time evolution of photovoltaic fields generated by arbitrary light patterns in z-cut LiNbO3: Fe: application to optoelectronic nanoparticle manipulation. Opt Express 28, 18085–18102 (2020). doi: 10.1364/OE.389153

    CrossRef Google Scholar

    [18] Wang C, Li ZY, Kim MH, Xiong X, Ren XF et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6

    CrossRef Google Scholar

    [19] Witmer JD, Valery JA, Arrangoiz-Arriola P, Sarabalis CJ, Hill JT et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep 7, 46313 (2017). doi: 10.1038/srep46313

    CrossRef Google Scholar

    [20] Xiong PX, Peng MY. Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3: Nd3+ for stress sensors. J Mater Chem C 7, 6301–6307 (2019). doi: 10.1039/C9TC00242A

    CrossRef Google Scholar

    [21] Luo R, He Y, Liang HX, Li MX, Lin Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5, 1006–1011 (2018). doi: 10.1364/OPTICA.5.001006

    CrossRef Google Scholar

    [22] Smalley DE, Smithwick QYJ, Bove VM Jr, Barabas J, Jolly S. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313–317 (2013). doi: 10.1038/nature12217

    CrossRef Google Scholar

    [23] Hao ZZ, Zhang L, Gao A, Mao WB, Lyu XD et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci China Phys Mech Astron 61, 114211 (2018). doi: 10.1007/s11433-018-9241-5

    CrossRef Google Scholar

    [24] Zhang L, Hao ZZ, Luo Q, Gao A, Zhang R et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt Lett 45, 3353–3356 (2020). doi: 10.1364/OL.393244

    CrossRef Google Scholar

    [25] Kong YF, Wu SQ, Liu SG, Chen SL, Xu JJ. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Appl Phys Lett 92, 251107 (2008). doi: 10.1063/1.2952275

    CrossRef Google Scholar

    [26] Dong YF, Liu SG, Kong YF, Chen SL, Rupp R et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region. Opt Lett 37, 1841–1843 (2012). doi: 10.1364/OL.37.001841

    CrossRef Google Scholar

    [27] Tian T, Kong YF, Liu SG, Li W, Chen SL et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3: Mo. Opt Express 21, 10460–10466 (2013). doi: 10.1364/OE.21.010460

    CrossRef Google Scholar

    [28] Zheng DH, Kong YF, Liu SG, Chen ML, Chen SL et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals. Sci Rep 6, 20308 (2016). doi: 10.1038/srep20308

    CrossRef Google Scholar

    [29] Saeed S, Zheng DH, Liu HD, Xue LY, Wang WW et al. Rapid response of photorefraction in vanadium and magnesium co-doped lithium niobate. J Phys D Appl Phys 52, 405303 (2019). doi: 10.1088/1361-6463/ab30ed

    CrossRef Google Scholar

    [30] Zheng DH, Wang WW, Wang SL, Qu D, Liu HD et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate. Appl Phys Lett 114, 241903 (2019). doi: 10.1063/1.5107460

    CrossRef Google Scholar

    [31] Li LL, Li YL, Zhao X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3: lone electron pair effect. Phys Rev B 96, 115118 (2017). doi: 10.1103/PhysRevB.96.115118

    CrossRef Google Scholar

    [32] Wang SL, Shan YD, Wang WW, Zheng DH, Liu HD et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3: Bi, M (M = Zn, In, Zr) crystals. Appl Phys Lett 118, 191902 (2021). doi: 10.1063/5.0048638

    CrossRef Google Scholar

    [33] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [34] Földvári I, Polgár K, Voszka R, Balasanyan RN. A simple method to determine the real composition of LiNbO3 crystals. Cryst Res Technol 19, 1659–1661 (1984). doi: 10.1002/crat.2170191231

    CrossRef Google Scholar

    [35] Polgár K, Kovács L, Földvári I, Cravero I. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Commun 59, 375–379 (1986). doi: 10.1016/0038-1098(86)90566-1

    CrossRef Google Scholar

    [36] Feng XQ, Tang TB. Mg-doping threshold effect and H-containing defects in LiNbO3. J Phys Condes Matter 5, 2423–2430 (1993). doi: 10.1088/0953-8984/5/15/013

    CrossRef Google Scholar

    [37] Furukawa Y, Kitamura K, Takekawa S, Niwa K, Yajima Y et al. The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure. J Cryst Growth 211, 230–236 (2000). doi: 10.1016/S0022-0248(99)00794-0

    CrossRef Google Scholar

    [38] Bardeen J, Shockley W. Scattering of electrons in crystals in the presence of large electric fields. Phys Rev 80, 69–71 (1950). doi: 10.1103/PhysRev.80.69

    CrossRef Google Scholar

    [39] Kaasbjerg K, Thygesen KS, Jacobsen KW. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85, 115317 (2012). doi: 10.1103/PhysRevB.85.115317

    CrossRef Google Scholar

    [40] Kaasbjerg K, Thygesen KS, Jauho AP. Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B 87, 235312 (2013). doi: 10.1103/PhysRevB.87.235312

    CrossRef Google Scholar

    [41] Xi JY, Long MQ, Tang L, Wang D, Shuai ZG. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348–4369 (2012). doi: 10.1039/c2nr30585b

    CrossRef Google Scholar

  • Supplementary information for The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility
    Supplementary information S2 Video: 60 Hz-Display.mp4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(8525) PDF downloads(942) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint