Hu YT, Liang D, Beausoleil RG. An advanced III-V-on-silicon photonic integration platform. Opto-Electron Adv 4, 200094 (2021). doi: 10.29026/oea.2021.200094
Citation: Hu YT, Liang D, Beausoleil RG. An advanced III-V-on-silicon photonic integration platform. Opto-Electron Adv 4, 200094 (2021) . doi: 10.29026/oea.2021.200094

Review Open Access

An advanced III-V-on-silicon photonic integration platform

More Information
  • In many application scenarios, silicon (Si) photonics favors the integration of III-V gain material onto Si substrate to realize the on-chip light source. In addition to the current popular integration approaches of III-V-on-Si wafer bonding or direct heteroepitaxial growth, a newly emerged promising solution of epitaxial regrowth on bonded substrate has attracted a lot of interests. High-quality III-V material realization and successful laser demonstrations show its great potential to be a promising integration platform for low-cost, high-integration density and highly scalable active-passive photonic integration on Si. This paper reviews recent research work on this regrowth on bonded template platform including template developments, regrown material characterizations and laser demonstrations. The potential advantages, opportunities and challenges of this approach are discussed.
  • 加载中
  • [1] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photon 9, 88–92 (2015). doi: 10.1038/nphoton.2014.321

    CrossRef Google Scholar

    [2] von den Driesch N, Stange D, Rainko D, Povstugar I, Zaumseil P et al. Advanced GeSn/SiGeSn group IV heterostructure lasers. Adv Sci 5, 1700955 (2018). doi: 10.1002/advs.201700955

    CrossRef Google Scholar

    [3] Margetis J, Zhou YY, Dou W, Grant PC, Alharthi B et al. All group-IV SiGeSn/GeSn/SiGeSn QW laser on Si operating up to 90 K. Appl Phys Lett 113, 221104 (2018). doi: 10.1063/1.5052563

    CrossRef Google Scholar

    [4] Lin SY, Zheng XZ, Yao J, Djordjevic SS, Cunningham JE et al. Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array. Opt Express 24, 21454–21462 (2016). doi: 10.1364/OE.24.021454

    CrossRef Google Scholar

    [5] Liang D, Roelkens G, Baets R, Bowers JE. Hybrid integrated platforms for silicon photonics. Materials 3, 1782–1802 (2010). doi: 10.3390/ma3031782

    CrossRef Google Scholar

    [6] Zhang C, Zhang SJ, Peters JD, Bowers JE. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica 3, 785–786 (2016). doi: 10.1364/OPTICA.3.000785

    CrossRef Google Scholar

    [7] Wang ZC, Tian B, Pantouvaki M, Guo WM, Absil P et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photon 9, 837–842 (2015). doi: 10.1038/nphoton.2015.199

    CrossRef Google Scholar

    [8] Wang ZC, van Gasse K, Moskalenko V, Latkowski S, Bente E et al. A III-V-on-Si ultra-dense comb laser. Light Sci Appl 6, e16260 (2017). doi: 10.1038/lsa.2016.260

    CrossRef Google Scholar

    [9] Wirths S, Mayer B, Schmid H, Lörtscher E, Sousa M et al. Room temperature lasing from monolithically integrated GaAs microdisks on Si. In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (IEEE, 2017); http://doi.org/10.1109/CLEOE-EQEC.2017.8086366.

    Google Scholar

    [10] Wirths S, Mayer BF, Schmid H, Sousa M, Gooth J et al. Room-temperature lasing from monolithically integrated GaAs microdisks on silicon. ACS Nano 12, 2169–2175 (2018). doi: 10.1021/acsnano.7b07911

    CrossRef Google Scholar

    [11] Mauthe S, Triviño NV, Baumgartner Y, Sousa M, Caimi D et al. InP-on-Si optically pumped microdisk lasers via monolithic growth and wafer bonding. IEEE J Sel Top Quantum Electron 25, 8300507 (2019).

    Google Scholar

    [12] Chen SM, Li W, Wu J, Jiang Q, Tang MC et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon 10, 307–311 (2016). doi: 10.1038/nphoton.2016.21

    CrossRef Google Scholar

    [13] Liu AY, Zhang C, Norman J, Snyder A, Lubyshev D et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett 104, 041104 (2014). doi: 10.1063/1.4863223

    CrossRef Google Scholar

    [14] Wan YT, Norman J, Li Q, Kennedy MJ, Liang D et al. 13 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 4, 940–944 (2017). doi: 10.1364/OPTICA.4.000940

    CrossRef Google Scholar

    [15] Liu ST, Wu XR, Jung D, Norman JC, Kennedy MJ et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 6, 128–134 (2019). doi: 10.1364/OPTICA.6.000128

    CrossRef Google Scholar

    [16] Wan YT, Zhang S, Norman JC, Kennedy MJ, He W et al. Directly modulated single-mode tunable quantum dot lasers at 1.3 μm. Laser Photon Rev 14, 1900348 (2020). doi: 10.1002/lpor.201900348

    CrossRef Google Scholar

    [17] Wan YT, Norman JC, Tong YY, Kennedy MJ, He W et al. 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon Rev 14, 2000037 (2020). doi: 10.1002/lpor.202000037

    CrossRef Google Scholar

    [18] Jung D, Herrick R, Norman J, Turnlund K, Jan C et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett 112, 153507 (2018). doi: 10.1063/1.5026147

    CrossRef Google Scholar

    [19] Matsuo S, Takeda K, Sato T, Notomi M, Shinya A et al. Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. Opt Express 20, 3773–3780 (2012). doi: 10.1364/OE.20.003773

    CrossRef Google Scholar

    [20] Matsuo S, Fujii T, Hasebe K, Takeda K, Sato T et al. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt Express 22, 12139–12147 (2014). doi: 10.1364/OE.22.012139

    CrossRef Google Scholar

    [21] Fujii T, Sato T, Takeda K, Hasebe K, Kakitsuka T et al. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron 9, 151–157 (2015). doi: 10.1049/iet-opt.2014.0138

    CrossRef Google Scholar

    [22] Nishi H, Fujii T, Diamantopoulos NP, Takeda K, Kanno E et al. Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG Filter on Si. In 2018 Optical Fiber Communication Conference (OSA, 2018); http://doi.org/10.1364/ofc.2018.th3b.2

    Google Scholar

    [23] Aihara T, Hiraki T, Fujii T, Takeda K, Tsuchizawa T et al. 56-Gbit/s operations of mach-zehnder modulators using 300-μm-long membrane InGaAsP phase shifters and SiN waveguides on Si. In 2019 Optical Fiber Communications Conference and Exhibition (IEEE, 2019); http://doi.org/10.1364/ofc.2019.m4a.3

    Google Scholar

    [24] Sugiyama H, Nishiyama T, Kamada N, Onuki Y, Han X et al. Low threshold current of GaInAsP laser grown on directly bonded InP/Si substrate. In 2017 Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017); http://doi.org/10.1109/CLEOPR.2017.8119024.

    Google Scholar

    [25] Periyanayagam GK, Nishiyama T, Kamada N, Onuki Y, Shimomura K. Lasing characteristics of 1.2 μm GaInAsP LD on InP/Si substrate. Phys Status Solidi (A) 215, 1700357 (2018). doi: 10.1002/pssa.201700357

    CrossRef Google Scholar

    [26] Tsushima K, Uchida K, Han X, Sugiyama H, Aikawa M et al. Lasing characteristics of GalnAsP SCH MQW high-mesa laser on silicon substrate. In 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (IEEE, 2019); http://doi.org/10.23919/PS.2019.8818102.

    Google Scholar

    [27] Sugiyama H, Uchida K, Han X, Periyanayagam GK, Aikawa M et al. MOVPE grown GaInAsP/GaInAsP SCH-MQW laser diode on directly-bonded InP/Si substrate. J Cryst Growth 507, 93–97 (2019). doi: 10.1016/j.jcrysgro.2018.10.024

    CrossRef Google Scholar

    [28] Hu YT, Liang D, Zhang C, Kurczveil G, Huang X et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate. In 2018 IEEE Photonics Conference (IEEE, 2018); http://doi.org/10.1109/IPCon.2018.8527345

    Google Scholar

    [29] Hu YT, Liang D, Mukherjee K, Li YL, Zhang C et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci Appl 8, 93 (2019). doi: 10.1038/s41377-019-0202-6

    CrossRef Google Scholar

    [30] Hu YT, Liang D, Kurczveil G, Beausoleil RG. A bonded template-assisted monolithic integration platform. Proc SPIE 11184, 111840O (2019). doi: 10.1117/12.2539077

    CrossRef Google Scholar

    [31] Besancon C, Vaissiere N, Dupré C, Fournel F, Sanchez L et al. Epitaxial growth of high-quality AlGaInAs-based active structures on a directly bonded InP-SiO2/Si substrate. Phys Status Solidi (A) 217, 1900523 (2020). doi: 10.1002/pssa.201900523

    CrossRef Google Scholar

    [32] Besancon C, Cerulo G, Néel D, Vaissiere N, Make D et al. Comparison of AlGaInAs-based laser behavior grown on hybrid InP-SiO2/Si and InP substrates. IEEE Photon Technol Lett 32, 469–472 (2020). doi: 10.1109/lpt.2020.2979254

    CrossRef Google Scholar

    [33] Liang D, Huang X, Kurczveil G, Fiorentino M, Beausoleil RG. Integrated finely tunable microring laser on silicon. Nat Photon 10, 719–722 (2016). doi: 10.1038/nphoton.2016.163

    CrossRef Google Scholar

    [34] Norman JC, Jung D, Zhang ZY, Wan YT, Liu ST et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron 55, 2000511 (2019).

    Google Scholar

    [35] Besancon C, Fanneau P, Néel D, Cerulo G, Vaissiere N et al. Laser array covering 155 nm wide spectral band achieved by selective area growth on silicon wafer. In 2020 European Conference on Optical Communications (IEEE, 2020); http://doi.org/10.1109/ECOC48923.2020.9333230.

    Google Scholar

    [36] Matsumoto K, Kishikawa J, Nishiyama T, Kanke T, Onuki Y et al. Room-temperature operation of GaInAsP lasers epitaxially grown on wafer-bonded InP/Si substrate. Appl Phys Express 9, 062701 (2016). doi: 10.7567/APEX.9.062701

    CrossRef Google Scholar

    [37] Kallarasan PG, Nishiyama T, Kamada N, Onuki Y, Shimomura K. 1.5μm laser diode on InP/Si substrate by epitaxial growth using direct bonding method. In 2017 Conference on Lasers and Electro-Optics (IEEE, 2017); http://doi.org/10.1364/CLEO_AT.2017.JTu5A.108.

    Google Scholar

    [38] Aihara T, Hiraki T, Takeda K, Hasebe K, Fujii T et al. Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide. In 2018 Optical Fiber Communications Conference and Exposition (IEEE, 2018); http://doi.org/10.1364/ofc.2018.w3f.4.

    Google Scholar

    [39] Moscoso-Mártir A, Merget F, Mueller J, Hauck J, Romero-García S et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment. In 2017 Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017); http://doi.org/10.1109/CLEOPR.2017.8118971.

    Google Scholar

    [40] Zhang C, Bowers JE. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt Fiber Technol 44, 2–12 (2018). doi: 10.1016/j.yofte.2017.12.007

    CrossRef Google Scholar

    [41] Huang R, Lan T, Li C, Li J, Wang ZY. Investigation of the blistering and exfoliation mechanism of GaAs wafers and SiO2/Si3N4/GaAs Wafers by He+ and H+ implantation. Crystals 10, 520 (2020). doi: 10.3390/cryst10060520

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(6398) PDF downloads(2380) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint