Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021
Citation: Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021

Review Open Access

Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication

More Information
  • Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics. It has a wide range of applications in our daily lives, including novel light sources, sensing, and information processing. It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect. However, the large size of nonlinear crystals is not compatible with the miniaturisation of modern photonic and optoelectronic systems. Therefore, shrinking the nonlinear structures down to the nanoscale, while keeping favourable conversion efficiencies, is of great importance for future photonics applications. In the last decade, researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale, e.g. by employing different nonlinear materials, resonant couplings and hybridization techniques. In this paper, we provide a compact review of the nanomaterials-based efforts, ranging from metal to dielectric and semiconductor nanostructures, including their relevant nanofabrication techniques.

  • 加载中
  • [1] Maiman T H. Stimulated optical radiation in ruby. Nature 187, 493-494 (1960). doi: 10.1038/187493a0

    CrossRef Google Scholar

    [2] Boyd R W. Nonlinear Optics 2nd ed (Academic Press, Rochester, NY, USA, 2003).

    Google Scholar

    [3] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics. Mater Today 21, 8-21 (2018). doi: 10.1016/j.mattod.2017.06.007

    CrossRef Google Scholar

    [4] Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982-14988 (2015). doi: 10.1039/C5NR03304G

    CrossRef Google Scholar

    [5] Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244

    CrossRef Google Scholar

    [6] Wolf O, Campione S, Benz A, Ravikumar A P, Liu S et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat Commun 6, 7667 (2015). doi: 10.1038/ncomms8667

    CrossRef Google Scholar

    [7] Klein M W, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science 313, 502-504 (2006). doi: 10.1126/science.1129198

    CrossRef Google Scholar

    [8] Aouani H, Navarro-Cia M, Rahmani M, Sidiropoulos T P H, Hong M H et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett 12, 4997-5002 (2012). doi: 10.1021/nl302665m

    CrossRef Google Scholar

    [9] Gennaro S D, Rahmani M, Giannini V, Aouani H, Sidiropoulos T P H et al. The interplay of symmetry and scattering phase in second harmonic generation from gold nanoantennas. Nano Lett 16, 5278-5285 (2016). doi: 10.1021/acs.nanolett.6b02485

    CrossRef Google Scholar

    [10] Niesler F B P, Feth N, Linden S, Niegemann J, Gieseler J et al. Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt Lett 34, 1997-1999 (2009). doi: 10.1364/OL.34.001997

    CrossRef Google Scholar

    [11] Panoiu N C, Sha W E I, Lei D Y, Li G C. Nonlinear optics in plasmonic nanostructures. J Opt 20, 083001 (2018). doi: 10.1088/2040-8986/aac8ed

    CrossRef Google Scholar

    [12] Midtvedt D, Isacsson A, Croy A. Nonlinear phononics using atomically thin membranes. Nat Commun 5, 4838 (2014). doi: 10.1038/ncomms5838

    CrossRef Google Scholar

    [13] Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65-69 (2014). doi: 10.1038/nature13455

    CrossRef Google Scholar

    [14] Liu H Z, Guo C, Vampa G, Zhang J L, Sarmiento T et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys 14, 1006-101 (2018). doi: 10.1038/s41567-018-0233-6

    CrossRef Google Scholar

    [15] Yang Y M, Wang W Y, Boulesbaa A, Kravchenko I I, Briggs D P et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett 15, 7388-7393 (2015). doi: 10.1021/acs.nanolett.5b02802

    CrossRef Google Scholar

    [16] Luo X G. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [17] Hong M H. Metasurface wave in planar nano-photonics. Sci Bull 61, 112-113 (2016). doi: 10.1007/s11434-015-0948-z

    CrossRef Google Scholar

    [18] Giannini V, Fernández-Domínguez A I, Heck S C, Maier S A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111, 3888-3912 (2011). doi: 10.1021/cr1002672

    CrossRef Google Scholar

    [19] Metzger B, Hentschel M, Schumacher T, Lippitz M, Ye X C et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett 14, 2867-2872 (2014). doi: 10.1021/nl500913t

    CrossRef Google Scholar

    [20] Aouani H, Rahmani M, Navarro-Cía M, Maier S A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9, 290-294 (2014). doi: 10.1038/nnano.2014.27

    CrossRef Google Scholar

    [21] Metzger B, Gui L L, Fuchs J, Floess D, Hentschel M et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett 15, 3917-3922 (2015). doi: 10.1021/acs.nanolett.5b00747

    CrossRef Google Scholar

    [22] Butet J, Brevet P F, Martin O J F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS Nano 9, 10545-10562 (2015). doi: 10.1021/acsnano.5b04373

    CrossRef Google Scholar

    [23] Rahmani M, Shorokhov A S, Hopkins B, Miroshnichenko A E, Shcherbakov M R et al. Nonlinear symmetry breaking in symmetric oligomers. ACS Photonics 4, 454-461 (2017). doi: 10.1021/acsphotonics.6b00902

    CrossRef Google Scholar

    [24] Celebrano M, Wu X F, Baselli M, Gro mann S, Biagioni P et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10, 412-417 (2015). doi: 10.1038/nnano.2015.69

    CrossRef Google Scholar

    [25] Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol 6, 1199-1204 (2015). doi: 10.3762/bjnano.6.122

    CrossRef Google Scholar

    [26] Maier S A. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, New York, 2007).

    Google Scholar

    [27] Rahmani M, Tahmasebi T, Lin Y, Lukiyanchuk B, Liew T Y F et al. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers. Nanotechnology 22, 245204 (2011). doi: 10.1088/0957-4484/22/24/245204

    CrossRef Google Scholar

    [28] Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018).

    Google Scholar

    [29] Chen L W, Zhou Y, Wu M X, Hong M H. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018).

    Google Scholar

    [30] Rahmani M, Luk'yanchuk B, Hong M H. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7, 329-349 (2013).

    Google Scholar

    [31] Zhang W Q, Rahmani M, Niu W X, Ravaine S, Hong M H et al. Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced raman scattering. Sci Rep 5, 8382 (2015). doi: 10.1038/srep08382

    CrossRef Google Scholar

    [32] Della Picca F, Berte R, Rahmani M, Albella P, Bujjamer J M et al. Tailored hypersound generation in single plasmonic nanoantennas. Nano Lett 16, 1428-1434 (2016). doi: 10.1021/acs.nanolett.5b04991

    CrossRef Google Scholar

    [33] Kuznetsov A I, Miroshnichenko A E, Fu Y H, Viswanathan V, Rahmani M et al. Split-ball resonator as a three-dimensional analogue of planar split-rings. Nat Commun 5, 3104 (2014). doi: 10.1038/ncomms4104

    CrossRef Google Scholar

    [34] Hanke T, Cesar J, Knittel V, Trügler A, Hohenester U et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett 12, 992-996 (2012). doi: 10.1021/nl2041047

    CrossRef Google Scholar

    [35] Fernandez-Garcia R, Rahmani M, Hong M H, Maier S A, Sonnefraud Y. Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. Opt Express 21, 12552-12561 (2013). doi: 10.1364/OE.21.012552

    CrossRef Google Scholar

    [36] Yoxall E, Navarro-Cía M, Rahmani M, Maier S A, Phillips C C. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers. Appl Phys Lett 103, 213110 (2013). doi: 10.1063/1.4832859

    CrossRef Google Scholar

    [37] Geraci G, Hopkins B, Miroshnichenko A E, Erkihun B, Neshev D N et al. Polarisation-independent enhanced scattering by tailoring asymmetric plasmonic systems. Nanoscale 8, 6021-6027 (2016). doi: 10.1039/C6NR00029K

    CrossRef Google Scholar

    [38] Rifat A A, Rahmani M, Xu L, Miroshnichenko A E. Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor. Materials 11, 1091 (2018). doi: 10.3390/ma11071091

    CrossRef Google Scholar

    [39] Franken P, Hill A E, Peters C W, Weinreich G. Generation of optical harmonics. Phys Rev Lett 7, 118-119 (1961). doi: 10.1103/PhysRevLett.7.118

    CrossRef Google Scholar

    [40] Segovia P, Marino G, Krasavin A V, Olivier N, Wurtz G A et al. Hyperbolic metamaterial antenna for second-harmonic generation tomography. Opt Express 23, 30730-30738 (2015). doi: 10.1364/OE.23.030730

    CrossRef Google Scholar

    [41] Marino G, Segovia P, Krasavin A V, Ginzburg P, Olivier N et al. Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Photonics Rev 12, 1700189 (2018).

    Google Scholar

    [42] Wang P, Krasavin A V, Nasir M E, Dickson W, Zayats A V. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat Nanotechnol 13, 159-164 (2018). doi: 10.1038/s41565-017-0017-7

    CrossRef Google Scholar

    [43] Dickson W, Beckett S, McClatchey C, Murphy A, O'Connor D et al. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials. Adv Mater 27, 5974-5980 (2015). doi: 10.1002/adma.201501325

    CrossRef Google Scholar

    [44] Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, Hopkins B, Chong K E et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances. Nano Lett 16, 4857-4861 (2016). doi: 10.1021/acs.nanolett.6b01249

    CrossRef Google Scholar

    [45] Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 16, 4635-4640 (2016). doi: 10.1021/acs.nanolett.6b01958

    CrossRef Google Scholar

    [46] Nielsen M P, Lafone L, Rakovich A, Sidiropoulos T P H, Rahmani M et al. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett 16, 1410-1414 (2016). doi: 10.1021/acs.nanolett.5b04931

    CrossRef Google Scholar

    [47] Caldarola M, Albella P, Cortés E, Rahmani M, Roschuk T et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 6, 7915 (2015). doi: 10.1038/ncomms8915

    CrossRef Google Scholar

    [48] Ikeda K, Shen Y M, Fainman Y. Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. Opt Express 15, 17761-17771 (2007). doi: 10.1364/OE.15.017761

    CrossRef Google Scholar

    [49] Gai X, Choi D Y, Luther-Davies B. Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing. Opt Express 22, 9948-9958 (2014). doi: 10.1364/OE.22.009948

    CrossRef Google Scholar

    [50] Fauchet P M, Hulin D. Ultrafast carrier relaxation in hydrogenated amorphous silicon. J Opt Sci Am B 6, 1024-1029 (1989). doi: 10.1364/JOSAB.6.001024

    CrossRef Google Scholar

    [51] Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J of Quantum Electron 26, 760-769 (1990). doi: 10.1109/3.53394

    CrossRef Google Scholar

    [52] Boyd G D, Patel C K N. Enhancement of optical second‐harmonic generation (SHG) by reflection phase matching in Zns and GaAs. Appl Phys Lett 8, 313-315 (1966). doi: 10.1063/1.1754454

    CrossRef Google Scholar

    [53] Carletti L, Locatelli A, Stepanenko O, Leo G, De Angelis C. Enhanced second-harmonic generation from magnetic resonance in ALGaAs nanoantennas. Opt Express 23, 26544-26550 (2015). doi: 10.1364/OE.23.026544

    CrossRef Google Scholar

    [54] Cambiasso J, Grinblat G, Li Y, Rakovich A, Cortés E et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett 17, 1219-1225 (2017). doi: 10.1021/acs.nanolett.6b05026

    CrossRef Google Scholar

    [55] Person S, Jain M, Lapin Z, Sáenz J J, Wicks G et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 13, 1806-1809 (2013). doi: 10.1021/nl4005018

    CrossRef Google Scholar

    [56] Gili V F, Carletti L, Locatelli A, Rocco D, Finazzi M et al. Monolithic ALGaAs second-harmonic nanoantennas. Opt Express 24, 15965-15971 (2016). doi: 10.1364/OE.24.015965

    CrossRef Google Scholar

    [57] Liu S, Sinclair M B, Saravi S, Keeler G A, Yang Y M et al. Resonantly enhanced second-harmonic generation using Ⅲ-Ⅴ semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426-5432 (2016). doi: 10.1021/acs.nanolett.6b01816

    CrossRef Google Scholar

    [58] Camacho-Morales R, Rahmani M, Kruk S, Wang L, Xu L et al. Nonlinear generation of vector beams from ALGaAs nanoantennas. Nano Lett 16, 7191-7197 (2016). doi: 10.1021/acs.nanolett.6b03525

    CrossRef Google Scholar

    [59] Shcherbakov M R, Shorokhov A S, Neshev D N, Hopkins B, Staude I et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics 2, 578-582 (2015). doi: 10.1021/acsphotonics.5b00065

    CrossRef Google Scholar

    [60] Della Valle G, Hopkins B, Ganzer L, Stoll T, Rahmani M et al. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photonics 4, 2129-2136 (2017). doi: 10.1021/acsphotonics.7b00544

    CrossRef Google Scholar

    [61] Chen S M, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photonics 5, 1671-1675 (2018). doi: 10.1021/acsphotonics.7b01423

    CrossRef Google Scholar

    [62] Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).

    Google Scholar

    [63] Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Degenerate four-wave mixing in a multiresonant germanium nanodisk. ACS Photonics 4, 2144-2149 (2017). doi: 10.1021/acsphotonics.7b00631

    CrossRef Google Scholar

    [64] Chen L M, Jiang X F, Guo Z M, Zhu H, Kao T S et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014).

    Google Scholar

    [65] Wang L, Kruk S, Xu L, Rahmani M, Smirnova D et al. Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale 9, 2201-2206 (2017). doi: 10.1039/C6NR09702B

    CrossRef Google Scholar

    [66] Makarov S V, Petrov M I, Zywietz U, Milichko V, Zuev D et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett 17, 3047-3053 (2017). doi: 10.1021/acs.nanolett.7b00392

    CrossRef Google Scholar

    [67] Melik-Gaykazyan E V, Kruk S S, Camacho-Morales R, Xu L, Rahmani M et al. Selective third-harmonic generation by structured light in mie-resonant nanoparticles. ACS Photonics 5, 728-733 (2018). doi: 10.1021/acsphotonics.7b01277

    CrossRef Google Scholar

    [68] Tong W Y, Gong C, Liu X J, Yuan S, Huang Q Z et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt Express 24, 19661-19670 (2016). doi: 10.1364/OE.24.019661

    CrossRef Google Scholar

    [69] Kuznetsov A I, Miroshnichenko A E, Fu Y H, Zhang J B, Luk'yanchuk B. Magnetic light. Sci Rep 2, 492 (2012). doi: 10.1038/srep00492

    CrossRef Google Scholar

    [70] Smirnova D, Kivshar Y S. Multipolar nonlinear nanophotonics. Optica 3, 1241-1255 (2016). doi: 10.1364/OPTICA.3.001241

    CrossRef Google Scholar

    [71] Lu B H, Lan H B, Liu H Z. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018).

    Google Scholar

    [72] Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 14, 6488-6492 (2014). doi: 10.1021/nl503029j

    CrossRef Google Scholar

    [73] Choi W K, Liew T H, Dawood M K, Smith H I, Thompson C V et al. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8, 3799-3802 (2008). doi: 10.1021/nl802129f

    CrossRef Google Scholar

    [74] Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho- Morales R et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater 27, 1700580 (2017). doi: 10.1002/adfm.v27.31

    CrossRef Google Scholar

    [75] Shcherbakov M R, Vabishchevich P P, Shorokhov A S, Chong K E, Choi D Y et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 15, 6985-6990 (2015). doi: 10.1021/acs.nanolett.5b02989

    CrossRef Google Scholar

    [76] Xu L, Rahmani M, Kamali K Z, Lamprianidis A, Ghirardini L et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light: Sci Appl 7, 44 (2018). doi: 10.1038/s41377-018-0051-8

    CrossRef Google Scholar

    [77] Löchner F J, Fedotova A N, Liu S, Keeler G A, Peake G M et al. Polarization-dependent second harmonic diffraction from resonant gaas metasurfaces. ACS Photonics 5, 1786-1793 (2018). doi: 10.1021/acsphotonics.7b01533

    CrossRef Google Scholar

    [78] Mie G. Beitr ge zur optik trüber medien, speziell kolloidaler metall sungen. Ann Phys 330, 377-445 (1908). doi: 10.1002/(ISSN)1521-3889

    CrossRef Google Scholar

    [79] Debye P. Der lichtdruck auf kugeln von beliebigem material. Ann Phys 335, 57-136 (1909). doi: 10.1002/(ISSN)1521-3889

    CrossRef Google Scholar

    [80] Xu L, Rahmani M, Smirnova D, Zangeneh Kamali K, Zhang G Q et al. Highly-efficient longitudinal second-harmonic generation from doubly-resonant algaas nanoantennas. Photonics 5, 29 (2018). doi: 10.3390/photonics5030029

    CrossRef Google Scholar

    [81] Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat Commun 9, 2507 (2018). doi: 10.1038/s41467-018-04944-9

    CrossRef Google Scholar

    [82] Carletti L, Marino G, Ghirardini L, Gili V F, Rocco D et al. Nonlinear goniometry by second-harmonic generation in algaas nanoantennas. ACS Photonics 5, 4386-4392 (2018). doi: 10.1021/acsphotonics.8b00810

    CrossRef Google Scholar

    [83] Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun 8, 17 (2017). doi: 10.1038/s41467-017-00019-3

    CrossRef Google Scholar

    [84] Aouani H, Navarro-Cía M, Rahmani M, Maier S A. Unveiling the origin of third harmonic generation in hybrid ITO-plasmonic crystals. Adv Opt Mater 3, 1059-1065 (2015). doi: 10.1002/adom.201500112

    CrossRef Google Scholar

    [85] Linnenbank H, Grynko Y, Förstner J, Linden S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light: Sci Appl 5, e16013 (2016). doi: 10.1038/lsa.2016.13

    CrossRef Google Scholar

    [86] Abb M, Albella P, Aizpurua J, Muskens O. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett 11, 2457-2463 (2011). doi: 10.1021/nl200901w

    CrossRef Google Scholar

    [87] Khurgin J, Tsai W Y, Tsai D P, Sun G. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics 4, 2871-2880 (2017). doi: 10.1021/acsphotonics.7b00860

    CrossRef Google Scholar

    [88] Pu M B, Guo Y H, Li X, Ma X L, Luo X G. Revisitation of extraordinary young's interference: From catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198-3204 (2018). doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [89] Fan W J, Zhang S, Panoiu N C, Abdenour A, Krishna S et al. Second harmonic generation from a nanopatterned isotropic nonlinear material. Nano Lett 6, 1027-1030 (2006). doi: 10.1021/nl0604457

    CrossRef Google Scholar

    [90] Pu Y, Grange R, Hsieh C L, Psaltis D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104, 207402 (2010). doi: 10.1103/PhysRevLett.104.207402

    CrossRef Google Scholar

    [91] Lehr D, Reinhold J, Thiele I, Hartung H, Dietrich K et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett 15, 1025-1030 (2015). doi: 10.1021/nl5038819

    CrossRef Google Scholar

    [92] Shibanuma T, Grinblat G, Albella P, Maier S A. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas. Nano Lett 17, 2647-2651 (2017). doi: 10.1021/acs.nanolett.7b00462

    CrossRef Google Scholar

    [93] Gili V F, Ghirardini L, Rocco D, Marino G, Favero I et al. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J Nanotechnol 9, 2306-2314 (2018). doi: 10.3762/bjnano.9.215

    CrossRef Google Scholar

    [94] Decker M, Pertsch T, Staude I. Strong coupling in hybrid metal-dielectric nanoresonators. Philos Trans Roy Soc A: Math, Phys Eng Sci 375, 20160312 (2017). doi: 10.1098/rsta.2016.0312

    CrossRef Google Scholar

    [95] Guo R, Rusak E, Staude I, Dominguez J, Decker M et al. Multipolar coupling in hybrid metal-dielectric metasurfaces. ACS Photonics 3, 349-353 (2016). doi: 10.1021/acsphotonics.6b00012

    CrossRef Google Scholar

    [96] Rusak E, Staude I, Decker M, Sautter J, Miroshnichenko A E et al. Hybrid nanoantennas for directional emission enhancement. Appl Phys Lett 105, 221109 (2014). doi: 10.1063/1.4903219

    CrossRef Google Scholar

    [97] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics 8, 899 (2014). doi: 10.1038/nphoton.2014.271

    CrossRef Google Scholar

    [98] Zheng X R, Jia B H, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699-2703 (2014). doi: 10.1002/adma.201304681

    CrossRef Google Scholar

    [99] Fryett T, Zhan A, Majumdar A. Cavity nonlinear optics with layered materials. Nanophotonics 7, 69 (2017).

    Google Scholar

    [100] Dai S, Ma Q, Liu M K, Andersen T, Fei Z et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10, 682-686 (2015). doi: 10.1038/nnano.2015.131

    CrossRef Google Scholar

    [101] Kumar A, Low T, Fung K H, Avouris P, Fang N X. Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system. Nano Lett 15, 3172-3180 (2015). doi: 10.1021/acs.nanolett.5b01191

    CrossRef Google Scholar

    [102] Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photonics 7, 948-957 (2013). doi: 10.1038/nphoton.2013.243

    CrossRef Google Scholar

    [103] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene. Prog Mater Sci 73, 44-126 (2015). doi: 10.1016/j.pmatsci.2015.02.002

    CrossRef Google Scholar

    [104] Geissbuehler M, Bonacina L, Shcheslavskiy V, Bocchio N L, Geissbuehler S et al. Nonlinear correlation spectroscopy (NLCS). Nano Lett 12, 1668-1672 (2012). doi: 10.1021/nl300070n

    CrossRef Google Scholar

    [105] DaCosta M V, Doughan S, Han Y, Krull U J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal Chim Acta 832, 1-33 (2014). doi: 10.1016/j.aca.2014.04.030

    CrossRef Google Scholar

    [106] Makarov S V, Tsypkin A N, Voytova T A, Milichko V A, Mukhin I S et al. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation. Nanoscale 8, 17809-17814 (2016). doi: 10.1039/C6NR04860A

    CrossRef Google Scholar

    [107] Krasavin A V, Ginzburg P, Wurtz G A, Zayats A V. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat Commun 7, 11497 (2016). doi: 10.1038/ncomms11497

    CrossRef Google Scholar

    [108] Barz S, Cronenberg G, Zeilinger A, Walther P. Heralded generation of entangled photon pairs. Nat Photonics 4, 553-556 (2010). doi: 10.1038/nphoton.2010.156

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(6896) PDF downloads(3065) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint