Citation: | Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018). doi: 10.29026/oea.2018.180010 |
[1] | Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation. Nat Photonics 8, 13-22 (2013). |
[2] | Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318, 131-136 (2000). doi: 10.1016/S0009-2614(99)01451-7 |
[3] | Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol 10, 865-869 (2015). doi: 10.1038/nnano.2015.170 |
[4] | Zhong J H, Jin X, Meng L Y, Wang X, Su H S et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol 12, 132-136 (2017). doi: 10.1038/nnano.2016.241 |
[5] | Li J F, Huang Y F, Ding Y, Yang Z L, Li S B et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392-395 (2010). doi: 10.1038/nature08907 |
[6] | Zhang W D, Li C, Gao K, Lu F F, Liu M et al. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29, 205301 (2018). doi: 10.1088/1361-6528/aab294 |
[7] | Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8, 2497-2502 (2008). doi: 10.1021/nl8015297 |
[8] | Xu K C, Wang Z Y, Tan C F, Kang N, Chen L W et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces 9, 26341-26349 (2017). doi: 10.1021/acsami.7b06669 |
[9] | Neacsu C C, Reider G A, Raschke M B. Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B 71, 201402 (2005). doi: 10.1103/PhysRevB.71.201402 |
[10] | Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244 |
[11] | Jin Y J, Chen L W, Wu M X, Lu X Z, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express 6, 1114-1121 (2016). doi: 10.1364/OME.6.001114 |
[12] | Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982-14988 (2015). doi: 10.1039/C5NR03304G |
[13] | Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol 6, 1199-1204 (2015). doi: 10.3762/bjnano.6.122 |
[14] | Chen C, Hayazawa N, Kawata S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5, 3312 (2014). doi: 10.1038/ncomms4312 |
[15] | Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013). doi: 10.1038/nature12151 |
[16] | Nerkararyan K V. Superfocusing of a surface polariton in a wedge-like structure. Phys Lett A 237, 103-105 (1997). doi: 10.1016/S0375-9601(97)00722-6 |
[17] | Lindquist N C, Nagpal P, Lesuffleur A, Norris D J, Oh S H. Three-dimensional plasmonic nanofocusing. Nano Lett 10, 1369-1373 (2010). doi: 10.1021/nl904294u |
[18] | Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J et al. Nanofocusing with channel plasmon polaritons. Nano Lett 9, 1278-1282 (2009). doi: 10.1021/nl900268v |
[19] | Fernández-Domínguez A I, Maier S A, Pendry J B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett 105, 266807 (2010). doi: 10.1103/PhysRevLett.105.266807 |
[20] | Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express 16, 45-57 (2008). doi: 10.1364/OE.16.000045 |
[21] | Tugchin B N, Janunts N, Klein A E, Steinert M, Fasold S et al. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2, 1468-1475 (2015). doi: 10.1021/acsphotonics.5b00339 |
[22] | Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4, 1856-1870 (2012). doi: 10.1039/C1NR11143D |
[23] | Huang T X, Huang S C, Li M H, Zeng Z C, Wang X et al. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem 407, 8177-8195 (2015). doi: 10.1007/s00216-015-8968-8 |
[24] | Verma P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem Rev 117, 6447-6466 (2017). doi: 10.1021/acs.chemrev.6b00821 |
[25] | Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7, 2784-2788 (2007). doi: 10.1021/nl071340m |
[26] | Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10, 592-596 (2010). doi: 10.1021/nl903574a |
[27] | Berweger S, Atkin J M, Olmon R L, Raschke M B. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3, 945-952 (2012). doi: 10.1021/jz2016268 |
[28] | Xu T, Wang C T, Du C L, Luo X G. Plasmonic beam deflector. Opt Express 16, 4753-4759 (2008). doi: 10.1364/OE.16.004753 |
[29] | Xu T, Du C L, Wang C T, Luo X G. Subwavelength imaging by metallic slab lens with nanoslits. Appl Phys Lett 91, 201501 (2007). doi: 10.1063/1.2811711 |
[30] | Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84, 4780 (2004). doi: 10.1063/1.1760221 |
[31] | Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N et al. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett 11, 1609-1613 (2011). doi: 10.1021/nl1045457 |
[32] | Müller M, Kravtsov V, Paarmann A, Raschke M B, Ernstorfer R. Nanofocused Plasmon-driven sub-10 fs electron point source. ACS Photonics 3, 611-619 (2016). doi: 10.1021/acsphotonics.5b00710 |
[33] | Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee J S et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040-6048 (2012). doi: 10.1021/nn301121h |
[34] | Berweger S, Atkin J M, Olmon R L, Raschke M B. Adiabatic Tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett 1, 3427-3432 (2010). doi: 10.1021/jz101289z |
[35] | Kravtsov V, Atkin J M, Raschke M B. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt Lett 38, 1322-1324 (2013). doi: 10.1364/OL.38.001322 |
[36] | Esmann M, Becker S F, da Cunha B B, Brauer J H, Vogelgesang R et al. k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy. Beilstein J Nanotechnol 4, 603-610 (2013). doi: 10.3762/bjnano.4.67 |
[37] | Mihaljevic J, Hafner C, Meixner A J. Grating enhanced apertureless near-field optical microscopy. Opt Express 23, 18401-18414 (2015). doi: 10.1364/OE.23.018401 |
[38] | Lee J S, Han S, Shirdel J, Koo S, Sadiq D et al. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method. Opt Express 19, 12342-12347 (2011). doi: 10.1364/OE.19.012342 |
[39] | Andrey P. Nanofocusing of surface Plasmons at the apex of metallic probe tips. J Nanoelectron Optoe 5, 310-314 (2010). doi: 10.1166/jno.2010.1116 |
[40] | Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370 |
[41] | Palik E D. Handbook of Optical Constants of Solids (Academic, San Diego, America, 1998). |
[42] | Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93, 137404 (2004). doi: 10.1103/PhysRevLett.93.137404 |
[43] | Fang Z Y, Lin C F, Ma R M, Huang S, Zhu X. Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4, 75-82 (2010). doi: 10.1021/nn900729n |
[44] | Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11, 1676-1680 (2011). doi: 10.1021/nl200179y |
[45] | Gurevich V S, Libenson M N. Surface polaritons propagation along micropipettes. Ultramicroscopy 57, 277-281 (1995). doi: 10.1016/0304-3991(94)00152-D |
[46] | Babadjanyan A J, Margaryan N L, Nerkararyan K V. Superfocusing of surface polaritons in the conical structure. J Appl Phys 87, 3785 (2000). doi: 10.1063/1.372414 |
[47] | Zhang W D, Huang L G, Wei K Y, Li P, Jiang B Q et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express 24, 10376-10384 (2016). doi: 10.1364/OE.24.010376 |
[48] | Novotny L, Hafner C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50, 4094-4106 (1994). doi: 10.1103/PhysRevE.50.4094 |
[49] | Gramotnev D K, Vogel M W, Stockman M I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys 104, 034311 (2008). doi: 10.1063/1.2963699 |
[50] | Issa N A, Guckenberger R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31-37 (2007). doi: 10.1007/s11468-006-9022-7 |
Supplementary information for Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip |
![]() |
Geometry of a conical silver tip with grating-assisted light coupling.
(a) Sketch map of SPPs excitation using a planar grating; (b) Dispersion relationship of SPPs and the grating coupling; (c) Reflection obtained from the field monitor located above the surface without grating; (d) Re(Hy) distribution of the grating-coupled SPPs generation and propagation along the silver-air interface with excitation wavelength at λ=632.8 nm and θ=28.5°.
Effective indices neff in real part (a) and imaginary part (b) of guided SPP modes versus the radius of cylindrical silver guide R. (c) Sketch map of a silver tip removing the diffracting grating. (d–j) Transverse modes intensity distributions of guided modes for R=1 μm.
(a) Transverse mode intensity distributions of the grating-coupled SPPs at R=1 μm; (b–g) Transverse mode intensity distributions of the hybrid mode at R=800, 750, 600, 350, 230, and 20 nm, respectively. (h) Electric field intensity distribution at the tip apex. (i) Transverse electric field intensity distribution at 1 nm below the tip apex.
Adiabatic parameter δ of TM01 mode versus R.
(a) Gap-mode configuration with the gap distance d=2 nm. (b) Electric field intensity and polarization distributions in the x-z plane. (c) Electric field intensity distribution in the x-y plane at 1 nm below the tip apex. (d) Comparison of electric field enhancement factor between the non-gap mode (Fig. 4(i)) and gap mode located at 1 nm below the apex of the silver tip.