基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统

邬映杰,伍志林,王玲,等. 基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统[J]. 光电工程,2021,48(3):200100. doi: 10.12086/oee.2021.200100
引用本文: 邬映杰,伍志林,王玲,等. 基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统[J]. 光电工程,2021,48(3):200100. doi: 10.12086/oee.2021.200100
Wu Y J, Wu Z L, Wang L, et al. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. Opto-Electron Eng, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100
Citation: Wu Y J, Wu Z L, Wang L, et al. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. Opto-Electron Eng, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100

基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统

  • 基金项目:
    国家重点研发计划重大仪器专项(2016YFF0102802);重庆市重点仪器专项(cstc2017zdcy-zdzxX0009);重庆市科研机构绩效激励引导专项基金资助项目(cstc2019jxjl130029);重庆市自然科学基金资助项目(cstc2018jcyjA3233, cstc2019jcyj-msxmX0623);中央高校基本科研业务费(2018CDQYGD0008, 2018CDXYGD0017, 2019CDQYGD004);重庆市研究生科研创新项目(CYS19011)
详细信息
    作者简介:
    通讯作者: 郭永彩(1963-),女,博士,教授,主要从事光电传感及精密测量仪器的研究。E-mail: ycguo@cqu.edu.cn
  • 中图分类号: TH837

Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor

  • Fund Project: National Key R & D Plan for Major Instruments (2016YFF0102802), Chongqing Key Instrument Project (cstc2017zdcy-zdzxX0009), Funded by Special Fund for Performance Incentive Guidance of Scientific Research Institutions in Chongqing (cstc2019jxjl130029), Chongqing Natural Science Foundation (cstc2018jcyjA3233, cstc2019jcyj- msxmX0623), Fundamental Scientific Research Business of Central Universities (2018CDQYGD0008, 2018CDXYGD0017, 2019CDQYGD004), and Chongqing Graduate Research and Innovation Project (CYS19011)
More Information
  • 呼吸率检测中存在主观因素强、信号提取复杂、设备不易获取和有线连接不方便测试者移动等问题。人体呼吸周期为3 s~6 s,呼吸气流是呼吸动作的最直接反应,与周围空气存在湿度差。本文采用研制的新型无机卤化物钙钛矿湿度传感器测量呼吸率,克服了市面上湿度传感器响应和恢复时间长(10 s以上)的问题。系统使用Zigbee无线通信传输检测信号,使信号检测和处理部分分离,方便测试者移动。使用上位机软件进行数据处理计算呼吸率,并根据呼吸暂停阈值判断呼吸状态。测试结果表明,系统可实时准确监测呼吸率,最大误差1次/分钟,具有准确率高、信号处理简单、便携和成本低的优势。

  • Overview: Respiratory rate, as an important parameter of respiratory function, refers to the number of breaths per minute, and can provide important information related to health status. Continuously, accurately and stably monitoring respiratory rate is great significance for preventing respiratory diseases, cardiovascular diseases. It is simple and accurate to measure breathing rate by measuring the respiratory airflow. However, common airflow detecting methods, such as temperature sensors, piezoelectric sensors, and flow sensors, having weak output signals. There is 30% humidity difference between human exhaled gas with the outside world, humidity sensor can be used to measure the breathing signal. Human breathing frequency from 12 to 20 times per minute. The response and recovery time of the humidity sensors on the market range from ten seconds to tens of seconds, which cannot use to respiratory rate monitoring. When 30% humidity change occurs in the inorganic halide perovskite humidity sensor made in this paper, resistance will change significantly and recover within 3 seconds, which can be used to measure respiratory nasal airflow signals.

    For the convenience of testers, this system uses Zigbee wireless network to transmit signals. The system is divided into four parts: sensor, data acquisition and sending node, receiving node, and host computer software. The data acquiring and sending node collects breathing signal converted by the humidity sensor and sends it to receiving node. Receiving node transmits received data to host computer software. The host computer software processes the received data, and compute respiratory rate through the algorithm. After processing, the relevant information is displayed on the interface for reference by medical staff. From the test data of five testers, it can be seen that under fast, slow, and normal breathing, the maximum error between the system test breathing rate and the tester's actual breathing rate is 1 per minute, and the system can accurately monitor the breathing rate.

    This article designs and develops a respiratory rate monitoring system based on an inorganic halide perovskite humidity sensor, which can accurately measure the breathing process through respiratory airflow. It has a simple structure, a large output signal, a fast response speed, low energy consumption, and is easy to carry. The advantage is that the system's measured breathing results have high accuracy and good circulation stability. The system is expected to be applied in many scenarios such as daily respiratory rate measurement and monitoring of patient respiratory rate in hospitals.

  • 加载中
  • 图 1  呼吸监测系统总体框图

    Figure 1.  Block diagram of respiratory monitoring system

    图 2  无机卤化物钙钛矿湿敏材料合成

    Figure 2.  Synthesis of inorganic halide perovskite - sensitive materials

    图 3  电阻式湿度传感器制作流程图

    Figure 3.  Resistance type humidity sensor making flow chart

    图 4  硬件电路框图

    Figure 4.  Hardware circuit diagram

    图 5  传感器信号转换电路

    Figure 5.  Sensor signal conversion circuit

    图 6  电源管理电路

    Figure 6.  Sensor signal conversion circuit

    图 7  串口转USB电路

    Figure 7.  Serial port to USB circuit

    图 8  数据采集、无线传输节点程序流程图

    Figure 8.  Data acquisition, wireless transmission node program

    图 9  接收节点程序流程图

    Figure 9.  Receive node program flowchart

    图 10  上位机软件界面

    Figure 10.  Upper computer software interface

    图 11  上位机程序流程图

    Figure 11.  Upper computer program flow chart

    图 12  传感器性能测试。(a) 重复性;(b) 梯度湿度;(c) 响应时间;(d) 恢复时间

    Figure 12.  Sensor performance test. (a) Repetitive; (b) Gradient humidity; (c) Response time; (d) Recovery time

    图 13  呼吸率监测系统实物。

    Figure 13.  Respiratory rate monitoring system.

    图 14  呼吸率监测显示与判断

    Figure 14.  Respiratory monitoring display and judgment

    表 1  呼吸率测试

    Table 1.  Respiratory rate testing

    编号呼吸率(次/分钟)
    慢速正常快速
    实际测试实际测试实际测试
    测试者17617172828
    测试者28815142425
    测试者3111118182626
    测试者49916152524
    测试者58716162424
    下载: 导出CSV
  • [1]

    Cretikos M A, Bellomo R, Hillman K, et al. Respiratory rate: the neglected vital sign[J]. Med J Aust, 2008, 188(11): 657-659. doi: 10.5694/j.1326-5377.2008.tb01825.x

    [2]

    Allen J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiol Meas, 2007, 28(3): R1-R39. doi: 10.1088/0967-3334/28/3/R01

    [3]

    Hogan J. Why don't nurses monitor the respiratory rates of patients?[J]. Br J Nurs, 2006, 15(9): 489-492. doi: 10.12968/bjon.2006.15.9.21087

    [4]

    陈星池, 赵海, 毕远国, 等. 手机可见光提取脉搏中呼吸率的估计[J]. 东北大学学报(自然科学版), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm

    Chen X C, Zhao H, Bi Y G, et al. Respiratory rate estimation from smartphone-camera-acquired pulse wave signal using visible light[J]. J Northeast Univ (Nat Sci), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm

    [5]

    Pimentel M A F, Johnson A E W, Charlton P H, et al. Toward a robust estimation of respiratory rate from pulse oximeters[J]. IEEE Trans Biomed Eng, 2017, 64(8): 1914-1923. doi: 10.1109/TBME.2016.2613124

    [6]

    陈星池, 赵海, 李晗, 等. 近红外可穿戴设备中脉搏波的呼吸率检测[J]. 光学 精密工程, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm

    Chen X C, Zhao H, Li H, et al. Detection of respiratory rate using pulse wave on near infrared wearable devices[J]. Opt Precision Eng, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm

    [7]

    Charlton P H, Birrenkott D A, Bonnici T, et al. Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review[J]. IEEE Rev Biomed Eng, 2018, 11: 2-20. doi: 10.1109/RBME.2017.2763681

    [8]

    储泰山, 陆美珠, 马志新. 基于床垫式生命监测仪的呼吸率检测[J]. 科技创新与应用, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm

    Chu T S, Lu M Z, Ma Z X. Respiratory rate measurement based on mattress life monitor[J]. Technol Innov Appl, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm

    [9]

    Turnbull H, Kasereka M C, Amirav I, et al. Development of a novel device for objective respiratory rate measurement in low-resource settings[J]. BMJ Innovat, 2018, 4(4): 185. doi: 10.1136/bmjinnov-2017-000267

    [10]

    Lee P J. Clinical evaluation of a novel respiratory rate monitor[J]. J Clin Monit Comp, 2016, 30(2): 175-183. doi: 10.1007/s10877-015-9697-4

    [11]

    范大勇. 便携式呼吸监测系统设计方案的改进和算法研究[D]. 天津: 天津大学, 2018.

    Fan D Y. Improved design and algorithm research of portable respiratory detection system[D]. Tianjin: Tianjin University, 2018.

    [12]

    Zhen Z, Li Z C, Zhao X L, et al. Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing[J]. Small, 2018, 14(15): 1703848. doi: 10.1002/smll.201703848

    [13]

    Smith A D, Elgammal K, Niklaus F, et al. Resistive graphene humidity sensors with rapid and direct electrical readout[J]. Nanoscale, 2015, 7(45): 19099-19109. doi: 10.1039/C5NR06038A

    [14]

    Atalay O, Kennon W R, Demirok E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling[J]. IEEE Sens J, 2015, 15(1): 110-122. doi: 10.1109/JSEN.2014.2339739

    [15]

    Zheng Y L, Ding X R, Poon C C Y, et al. Unobtrusive sensing and wearable devices for health informatics[J]. IEEE Trans Biomed Eng, 2014, 61(5): 1538-1554. doi: 10.1109/TBME.2014.2309951

    [16]

    Mogera U, Sagade A A, George S J, et al. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow[J]. Sci Rep, 2014, 4: 4103. http://www.nature.com/articles/srep04103

    [17]

    Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166-11173. doi: 10.1021/nn404889b

    [18]

    Adib F, Mao H Z, Kabelac Z E, et al. Smart homes that monitor breathing and heart rate[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, South Korea, 2015: 837-846.

    [19]

    Iber C, Ancoli-Israel S, Chesson A L, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications[M]. 2nd ed. Westchester, Ill, USA: American Academy of Sleep Medicine, 2012.

    [20]

    Anichini C, Aliprandi A, Gali S M, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach[J]. ACS Appl Mater Interfaces, 2020, 12(39): 44017-44025. doi: 10.1021/acsami.0c11236

  • 加载中

(14)

(1)

计量
  • 文章访问数:  5485
  • PDF下载数:  886
  • 施引文献:  0
出版历程
收稿日期:  2020-03-23
修回日期:  2020-11-06
刊出日期:  2021-03-15

目录

/

返回文章
返回