Zhang Y K, Shang Y, Wang C, et al. Detection and recognition of distributed optical fiber intrusion signal[J]. Opto-Electron Eng, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254
Citation: Zhang Y K, Shang Y, Wang C, et al. Detection and recognition of distributed optical fiber intrusion signal[J]. Opto-Electron Eng, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254

Detection and recognition of distributed optical fiber intrusion signal

    Fund Project: Natural Science Foundation of Shandong Province (ZR2019QF011), Science and Technology Innovation Project of Shandong Province - Major Special (2019JZZY010113), Key R & D Program of Shandong Province (2019GSF111065), and the Youth Innovation Science and Technology Program of Colleges in Shandong Province (2019KJJ004)
More Information
  • Distributed acoustic sensing (DAS) technology can detect acoustic or vibration signals with high sensitivity and wide dynamic range by receiving the phase information from coherent Rayleigh scattered light. Linear quantization is used to measure high fidelity restoration of the signals. With the increasing demand of practical applications, the optical fiber intrusion detection field has put forward higher requirements for event location and identification, which is manifested as the accurate classification of intrusion events. Therefore, the combination of distributed acoustic sensing and pattern recognition (PR) technology is a hot research topic at present. This is beneficial to promote the application and development of distributed optical fiber sensing technology. The research progress of the pattern recognition technology applied to distributed optical fiber intrusion detection in recent years is summarized in this paper, which can be used for feature extraction and classification algorithm research progress. In this paper, several feature extraction methods for realizing intrusion event signal recognition and their feature selection difficulties in different application situations are reviewed. Meanwhile, the advantages and disadvantages of specific event recognition algorithm are analyzed and summarized.
  • 加载中
  • [1] Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. J Light Technol, 2005, 23(6): 2081-2087. doi: 10.1109/JLT.2005.849924

    CrossRef Google Scholar

    [2] Pan Z Q, Liang K Z, Ye Q, et al. Phase-sensitive OTDR system based on digital coherent detection[J]. Proc SPIE, 2011, 8311: 83110S. doi: 10.1117/12.905657

    CrossRef Google Scholar

    [3] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Appl Opt, 2007, 46(11): 1968-1971. doi: 10.1364/AO.46.001968

    CrossRef Google Scholar

    [4] Lindsey N J, Martin E R, Dreger D S, et al. Fiber‐optic network observations of earthquake wavefields[J]. Geophys Res Lett, 2017, 44(23): 11792-11799. doi: 10.1002/2017GL075722

    CrossRef Google Scholar

    [5] Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS[C]//Proceedings of the 26th International Conference on Optical Fiber Sensors, 2018: ThE35.

    Google Scholar

    [6] Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. J Light Technol, 2019, 37(17): 4359-4366. doi: 10.1109/JLT.2019.2923839

    CrossRef Google Scholar

    [7] Johannessen K, Drakeley B, Farhadiroushan M. Distributed acoustic sensing-a new way of listening to your well/reservoir[C]//SPE Intelligent Energy International, Utrecht, the Netherlands, 2012: 149602.

    Google Scholar

    [8] Bao X Y, Zhou D P, Baker C, et al. Recent development in the distributed fiber optic acoustic and ultrasonic detection[J]. J Light Technol, 2017, 35(16): 3256-3267. doi: 10.1109/JLT.2016.2612060

    CrossRef Google Scholar

    [9] Muanenda Y. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry[J]. J Sens, 2018, 2018: 3897873.

    Google Scholar

    [10] Adeel M, Shang C, Zhu K, et al. Nuisance alarm reduction: using a correlation based algorithm above differential signals in direct detected phase-OTDR systems[J]. Opt Express, 2019, 27(5): 7685-7698. doi: 10.1364/OE.27.007685

    CrossRef Google Scholar

    [11] 饶云江, 吴敏, 冉曾令, 等. 基于准分布式FBG传感器的光纤入侵报警系统[J]. 传感技术学报, 2007, 20(5): 998-1002. doi: 10.3969/j.issn.1004-1699.2007.05.011

    CrossRef Google Scholar

    Rao Y J, Wu M, Ran Z L, et al. A fiber-optic intrusion alarm system based on quasi-distributed FBG sensors[J]. Chin J Sens Actuators, 2007, 20(5): 998-1002. doi: 10.3969/j.issn.1004-1699.2007.05.011

    CrossRef Google Scholar

    [12] Mahmoud S S, Katsifolis J. Elimination of rain-induced nuisance alarms in distributed fiber optic perimeter intrusion detection systems[J]. Proc SPIE, 2009, 7316: 731604. doi: 10.1117/12.818096

    CrossRef Google Scholar

    [13] 吴红艳, 贾波, 卞庞. 光纤周界安防系统端点检测技术的研究[J]. 仪器仪表学报, 2013, 34(4): 743-748. doi: 10.3969/j.issn.0254-3087.2013.04.004

    CrossRef Google Scholar

    Wu H Y, Jia B, Bian P. Study on endpoint detection technology based on fiber perimeter security system[J]. Chin J Sci Instrum, 2013, 34(4): 743-748. doi: 10.3969/j.issn.0254-3087.2013.04.004

    CrossRef Google Scholar

    [14] 王思远, 娄淑琴, 梁生, 等. M-Z干涉仪型光纤分布式扰动传感系统模式识别方法[J]. 红外与激光工程, 2014, 43(8): 2613-2618. doi: 10.3969/j.issn.1007-2276.2014.08.036

    CrossRef Google Scholar

    Wang S Y, Lou S Q, Liang S, et al. Pattern recognition method of fiber distributed disturbance sensing system based on M-Z interferometer[J]. Infrared Laser Eng, 2014, 43(8): 2613-2618. doi: 10.3969/j.issn.1007-2276.2014.08.036

    CrossRef Google Scholar

    [15] 刘琨, 何畅, 刘铁根, 等. 一种用于光纤周界安防系统的端点检测方法[J]. 光电子·激光, 2014, 25(11): 2136-2140.

    Google Scholar

    Liu K, He C, Liu T G, et al. An endpoint detection method for fiber perimeter security system[J]. J Opto Laser, 2014, 25(11): 2136-2140.

    Google Scholar

    [16] 朱程辉, 瞿永中, 王建平. 基于时频特征的光纤周界振动信号识别[J]. 光电工程, 2014, 41(1): 16-22. doi: 10.3969/j.issn.1003-501X.2014.01.004

    CrossRef Google Scholar

    Zhu C H, Qu Y Z, Wang J P. The vibration signal recognition of optical fiber perimeter based on time-frequency features[J]. Opto-Electron Eng, 2014, 41(1): 16-22. doi: 10.3969/j.issn.1003-501X.2014.01.004

    CrossRef Google Scholar

    [17] 王建平, 郝钊, 朱程辉. 基于相空间重构的光纤周界信号识别算法研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(5): 643-648. doi: 10.3969/j.issn.1003-5060.2017.05.014

    CrossRef Google Scholar

    Wang J P, Hao Z, Zhu C H. Research on vibration signal recognition of optical fiber perimeter based on phase space reconstruction[J]. J Hefei Univ Technol (Nat Sci), 2017, 40(5): 643-648. doi: 10.3969/j.issn.1003-5060.2017.05.014

    CrossRef Google Scholar

    [18] 刘琨, 翁凌锋, 江俊峰, 等. 基于过零率的光纤周界安防系统入侵事件高效识别[J]. 光学学报, 2019, 39(11): 1106002.

    Google Scholar

    Liu K, Weng L F, Jiang J F, et al. Zero-crossing rate based efficient identification of intrusion events in fiber perimeter security systems[J]. Acta Opt Sin, 2019, 39(11): 1106002.

    Google Scholar

    [19] 王照勇, 潘政清, 叶青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别[J]. 中国激光, 2015, 42(4): 0405010.

    Google Scholar

    Wang Z Y, Pan Z Q, Ye Q, et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chin J Lasers, 2015, 42(4): 0405010.

    Google Scholar

    [20] Cao C, Fan X Y, Liu Q W, et al. Practical pattern recognition system for distributed optical fiber intrusion monitoring system based on phase-sensitive coherent OTDR[C]//Asia Communications and Photonics Conference 2015, 2015: ASu2A. 145.

    Google Scholar

    [21] 黄翔东, 张皓杰, 刘琨, 等. 基于综合特征的光纤周界安防系统高效入侵事件识别[J]. 物理学报, 2017, 66(12): 124206. doi: 10.7498/aps.66.124206

    CrossRef Google Scholar

    Huang X D, Zhang H J, Liu K, et al. High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system[J]. Acta Phys Sin, 2017, 66(12): 124206. doi: 10.7498/aps.66.124206

    CrossRef Google Scholar

    [22] 邹东伯, 刘海, 赵亮, 等. 分布式光纤振动传感信号识别的研究[J]. 激光技术, 2016, 40(1): 86-89.

    Google Scholar

    Zou D B, Liu H, Zhao L, et al. Research of signal recognition of distributed optical fiber vibration sensors[J]. Laser Technol, 2016, 40(1): 86-89.

    Google Scholar

    [23] 帅师, 王翦, 吴红艳, 等. 一种分布式光纤传感系统的信号识别方法[J]. 复旦学报(自然科学版), 2018, 57(5): 611-618.

    Google Scholar

    Shuai S, Wang J, Wu H Y, et al. A signal recognition method for distributed optical fiber sensor system[J]. J Fudan Univ (Nat Sci), 2018, 57(5): 611-618.

    Google Scholar

    [24] Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. J Light Technol, 2016, 34(19): 4445-4453. doi: 10.1109/JLT.2016.2542981

    CrossRef Google Scholar

    [25] Tejedor J, Macias-Guarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 2017, 17(2): 355. doi: 10.3390/s17020355

    CrossRef Google Scholar

    [26] 李志辰, 刘琨, 江俊峰, 等. 光纤周界安防系统的高准确度事件识别方法[J]. 红外与激光工程, 2018, 47(9): 0922002.

    Google Scholar

    Li Z C, Liu K, Jiang J F, et al. A high-accuracy event discrimination method in optical fiber perimeter security system[J]. Infrared Laser Eng, 2018, 47(9): 0922002.

    Google Scholar

    [27] 陈沛超, 游赐天, 丁攀峰. 光纤周界防区入侵事件的模式识别研究[J]. 中国激光, 2019, 46(10): 1006001.

    Google Scholar

    Chen P C, You C T, Ding P F. Pattern recognition of intrusion events in perimeter defense areas of optical fiber[J]. Chin J Lasers, 2019, 46(10): 1006001.

    Google Scholar

    [28] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Math Phys Eng Sci, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193

    CrossRef Google Scholar

    [29] Liu K, Tian M, Liu T G, et al. A high-efficiency multiple events discrimination method in optical fiber perimeter security system[J]. J Light Technol, 2015, 33(23): 4885-4890. doi: 10.1109/JLT.2015.2494158

    CrossRef Google Scholar

    [30] 蒋立辉, 盖井艳, 王维波, 等. 基于总体平均经验模态分解的光纤周界预警系统模式识别方法[J]. 光学学报, 2015, 35(10): 1006002.

    Google Scholar

    Jiang L H, Gai J Y, Wang W B, et al. Ensemble empirical mode decomposition based event classification method for the fiber-optic intrusion monitoring system[J]. Acta Opt Sin, 2015, 35(10): 1006002.

    Google Scholar

    [31] 李静云, 安博文, 陈元林, 等. 基于时频特征的光纤振动模式识别研究[J]. 光通信技术, 2018, 42(7): 55-59.

    Google Scholar

    Li J Y, An B W, Chen Y L, et al. Research on optical fiber vibration pattern recognition based on time-frequency characteristics[J]. Opt Commun Technol, 2018, 42(7): 55-59.

    Google Scholar

    [32] 朱程辉, 朱睿, 王建平, 等. 基于自适应EMD的光纤安防系统入侵信号识别[J]. 传感器与微系统, 2020, 39(4): 26-30.

    Google Scholar

    Zhu C H, Zhu R, Wang J P, et al. Intrusion signal recognition of optical fiber security & protection system based on adaptive EMD[J]. Transducer and Microsystem Technologies, 2020, 39(4): 26-30.

    Google Scholar

    [33] 张景川, 曾周末, 赖平, 等. 基于小波能谱和小波信息熵的管道异常振动事件识别方法[J]. 振动与冲击, 2010, 29(5): 1-4. doi: 10.3969/j.issn.1000-3835.2010.05.001

    CrossRef Google Scholar

    Zhang J C, Zeng Z M, Lai P, et al. A recognition method with wavelet energy spectrum and wavelet information entropy for abnormal vibration events of a petroleum pipeline[J]. J Vib Shock, 2010, 29(5): 1-4. doi: 10.3969/j.issn.1000-3835.2010.05.001

    CrossRef Google Scholar

    [34] 李彦, 梁正桃, 李立京, 等. 基于小波和支持向量机的光纤微振动传感器模式识别[J]. 传感器与微系统, 2013, 32(2): 43-45, 49. doi: 10.3969/j.issn.1000-9787.2013.02.013

    CrossRef Google Scholar

    Li Y, Liang Z T, Li L J, et al. Pattern recognition of fiber-optic micro vibration sensor based on wavelet and SVM[J]. Transducer Microsyst Technol, 2013, 32(2): 43-45, 49. doi: 10.3969/j.issn.1000-9787.2013.02.013

    CrossRef Google Scholar

    [35] Wu H J, Xiao S K, Li X Y, et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. J Light Technol, 2015, 33(15): 3156-3162. doi: 10.1109/JLT.2015.2421953

    CrossRef Google Scholar

    [36] 喻骁芒, 罗光明, 朱珍民, 等. 分布式光纤传感器周界安防入侵信号的多目标识别[J]. 光电工程, 2014, 41(1): 36-41. doi: 10.3969/j.issn.1003-501X.2014.01.007

    CrossRef Google Scholar

    Yu X M, Luo G M, Zhu Z M, et al. The multi target recognition of intrusion signal of perimeter security with distributed fiber-optic sensor[J]. Opto-Electron Eng, 2014, 41(1): 36-41. doi: 10.3969/j.issn.1003-501X.2014.01.007

    CrossRef Google Scholar

    [37] 李凯彦, 赵兴群, 孙小菡, 等. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法[J]. 物理学报, 2015, 64(5): 054304.

    Google Scholar

    Li K Y, Zhao X Q, Sun X H, et al. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system[J]. Acta Phys Sin, 2015, 64(5): 054304.

    Google Scholar

    [38] Wu H J, Qian Y, Zhang W, et al. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring[J]. Photonic Sens, 2017, 7(4): 305-310. doi: 10.1007/s13320-017-0360-1

    CrossRef Google Scholar

    [39] 彭宽, 冯诚, 王森懋, 等. 基于时/频域综合特征提取的分布式光纤入侵监测系统事件识别方法[J]. 光学学报, 2019, 39(6): 0628002.

    Google Scholar

    Peng K, Feng C, Wang S M, et al. Event discrimination method for distributed optical fiber intrusion sensing system based on integrated time/frequency domain feature extraction[J]. Acta Opt Sin, 2019, 39(6): 0628002.

    Google Scholar

    [40] Sun Q, Feng H, Yan X Y, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 2015, 15(7): 15179-15197. doi: 10.3390/s150715179

    CrossRef Google Scholar

    [41] Aslangul S A. Detecting tunnels for border security based on fiber optical distributed acoustic sensor data using DBSCAN[C]//Proceedings of the 9th International Conference on Sensor Networks, 2020: 78-84.

    Google Scholar

    [42] Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn, 1995, 20(3): 273-297.

    Google Scholar

    [43] Qi X X, Ji J W, Han X W, et al. An Approach of passive vehicle type recognition by acoustic signal based on SVM[C]//Proceedings of the 2009 Third International Conference on Genetic and Evolutionary Computing, 2009: 545-548.

    Google Scholar

    [44] King D, Lyons W B, Flanagan C, et al. A multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition techniques[J]. Sens Actuator A Phys, 2004, 115(2-3): 293-302. doi: 10.1016/j.sna.2004.03.068

    CrossRef Google Scholar

    [45] Lewis E, Sheridan C, O'Farrell M, et al. Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals[J]. Sens Actuator A Phys, 2007, 136(1): 28-38. doi: 10.1016/j.sna.2007.02.012

    CrossRef Google Scholar

    [46] 张俊楠, 娄淑琴, 梁生. 基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 红外与激光工程, 2017, 46(4): 0422003.

    Google Scholar

    Zhang J N, Lou S Q, Liang S. Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system[J]. Infrared Laser Eng, 2017, 46(4): 0422003.

    Google Scholar

    [47] Tipping M E. The relevance vector machine[C]//Advances in Neural Information Processing Systems, 2000: 652-658.

    Google Scholar

    [48] 朱永利, 尹金良. 组合核相关向量机在电力变压器故障诊断中的应用研究[J]. 中国电机工程学报, 2013, 33(22): 68-74.

    Google Scholar

    Zhu Y L, Yin J L. Study on application of multi-kernel learning relevance vector machines in fault diagnosis of power transformers[J]. Proc IEEE Inst Electr Electron Eng, 2013, 33(22): 68-74.

    Google Scholar

    [49] 孙茜, 曾周末, 李健. 相关向量机在光纤预警系统模式识别中的应用[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1115-1120.

    Google Scholar

    Sun Q, Zeng Z M, Li J. Application of relevance vector machine in pattern recognition of optical fiber pre-warning system[J]. J Tianjin Univ (Sci Technol), 2014, 47(12): 1115-1120.

    Google Scholar

    [50] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[M]//Parallel Distributed Processing: Explorations in the Microstructure Of Cognition, Vol. 1: Foundations. Cambridge: MIT Press, 1986: 318-362.

    Google Scholar

    [51] 李小玉, 吴慧娟, 彭正谱, 等. 基于时间序列奇异谱特征的Φ-OTDR扰动检测方法[J]. 光子学报, 2014, 43(4): 0428001.

    Google Scholar

    Li X Y, Wu H J, Peng Z P, et al. A novel time sequence singular spectrum analysis method for Φ-OTDR disturbance detection system[J]. Acta Photo Sin, 2014, 43(4): 0428001.

    Google Scholar

    [52] 谢鑫, 吴慧娟, 饶云江. 一种基于光纤布喇格光栅振动传感器的光纤围栏入侵监测系统及其模式识别[J]. 光子学报, 2014, 43(5): 0506005.

    Google Scholar

    Xie X, Wu H J, Rao Y J. A fiber-optical perimeter intrusion detection system based on the fiber Bragg grating vibration sensors and its identification method[J]. Acta Photo Sin, 2014, 43(5): 0506005.

    Google Scholar

    [53] 沈隆翔, 封皓, 沙洲, 等. 基于下变频和IQ解调的外差型相位敏感光时域反射技术的模式识别[J]. 光学学报, 2017, 37(8): 0806005.

    Google Scholar

    Shen L X, Feng H, Sha Z, et al. Pattern recognition of heterodyne phase-sensitive optical time-domain reflection technique based on down conversion and IQ demodulation[J]. Acta Opt Sin, 2017, 37(8): 0806005.

    Google Scholar

    [54] Aktas M, Akgun T, Demircin M U, et al. Deep learning based threat classification in distributed acoustic sensing systems[C]//Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017.

    Google Scholar

    [55] Xu C J, Guan J J, Bao M, et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR[J]. Opt Eng, 2018, 57(1): 016103.

    Google Scholar

    [56] Shi Y, Wang Y Y, Zhao L, et al. An event recognition method for Φ-OTDR sensing system based on deep learning[J]. Sensors (Basel), 2019, 19(15): 3421. doi: 10.3390/s19153421

    CrossRef Google Scholar

    [57] 吴俊, 管鲁阳, 鲍明, 等. 基于多尺度一维卷积神经网络的光纤振动事件识别[J]. 光电工程, 2019, 46(5): 180493. doi: 10.12086/oee.2019.180493

    CrossRef Google Scholar

    Wu J, Guan L Y, Bao M, et al. Vibration events recognition of optical fiber based on multi-scale 1-D CNN[J]. Opto-Electron Eng, 2019, 46(5): 180493. doi: 10.12086/oee.2019.180493

    CrossRef Google Scholar

    [58] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.

    Google Scholar

    [59] Shiloh L, Eyal A, Giryes R. Deep learning approach for processing fiber-optic DAS seismic data[C]//Proceedings of the 26th International Conference on Optical Fiber Sensors, 2018: ThE22.

    Google Scholar

    [60] Li W, Zeng Z Q, Qu H Q, et al. A novel fiber intrusion signal recognition method for ofps based on SCN with dropout[J]. J Light Technol, 2019, 37(20): 5221-5230. doi: 10.1109/JLT.2019.2930624

    CrossRef Google Scholar

    [61] Wang Z Y, Zheng H R, Li L C, et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network[J]. Opt Express, 2019, 27(17): 23682-23692. doi: 10.1364/OE.27.023682

    CrossRef Google Scholar

    [62] Chen X, Xu C J. Disturbance pattern recognition based on an ALSTM in a long‐distance φ‐OTDR sensing system[J]. Microw Opt Technol Lett, 2020, 62(1): 168-175. doi: 10.1002/mop.32025

    CrossRef Google Scholar

    [63] Li Z Q, Zhang J W, Wang M N, et al. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection[J]. Opt Express, 2020, 28(3): 2925-2938. doi: 10.1364/OE.28.002925

    CrossRef Google Scholar

  • Overview: Developed on the basis of phase-sensitive optical time domain reflectrometer(Φ-OTDR), distributed acoustic sensing(DAS) is a new type of distributed optical fiber sensing technology. It is a hot topic that how to accurately distinguish the type of intrusion events from complex signals, which attachs greater importance to the research on the pattern recognition technology based on DAS.

    Intrusion signal recognition mainly includes two parts, feature extraction and classification algorithm. This paper summarizes the currently widely used feature extraction methods. Generally speaking, the time-domain features are simple, intuitive, and fast in response, but they are susceptible to noise. The frequency-domain features can obtain the inherent spectrum characteristics of the signal, but cannot reflect the frequency changes of the signal at every moment. The time-frequency domain features can express the time-domain and frequency-domain information of the signal, and the extracted feature information is also more accurate.

    Classification algorithms include two categories, unsupervised learning and supervised learning. Supervised learning need to collect a large amount of data for training and verification. Therefore, supervised learning algorithms are mostly used in the fiber intrusion detection applications. Support vector machines (SVM) and BP neural networks are relatively common models for classification. In recent years, with the development of deep learning technology, building deep neural network models is very helpful for classification recognition. Therefore, models such as convolutional neural network (CNN), recurrent neural network (RNN), and generative adversarial network (GAN) are used in the field of distributed optical fiber intrusion signal recognition, which have achieved great performance.

    In summary, choosing the proper feature extraction method and classification algorithm will greatly enhance the accuracy of intrusion signal recognition. Facing the increasing actual demands, the pattern recognition technology based on the DAS system will definitely play a more important role and fulfill its potential in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(25)

Tables(1)

Article Metrics

Article views(15158) PDF downloads(2568) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint