基于散斑检测的微型计算光谱仪研究进展

郑麒麟,文龙,陈沁. 基于散斑检测的微型计算光谱仪研究进展[J]. 光电工程,2021,48(3):200183. doi: 10.12086/oee.2021.200183
引用本文: 郑麒麟,文龙,陈沁. 基于散斑检测的微型计算光谱仪研究进展[J]. 光电工程,2021,48(3):200183. doi: 10.12086/oee.2021.200183
Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electron Eng, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183
Citation: Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electron Eng, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183

基于散斑检测的微型计算光谱仪研究进展

  • 基金项目:
    国家重点研发计划项目(2019YFB2203402);国家自然科学基金资助项目(11774383, 11774099, 11874029);广东省国际合作科技项目(2018A050506039);广东省杰出青年基金资助项目(2020B1515020037);广东省珠江人才计划项目(2019QN01X120)
详细信息
    作者简介:
    通讯作者: 陈沁(1979-),男,博士,教授,博士生导师,主要从事光学传感检测技术的研究。E-mail: chenqin2018@jnu.edu.cn
  • 中图分类号: O433

Research progress of computational microspectrometer based on speckle inspection

  • Fund Project: National Key Research and Development Program of China (2019YFB2203402), National Natural Science Foundation of China (11774383, 11774099 and 11874029), Guangdong Science and Technology Program International Cooperation Program (2018A050506039), Guangdong Basic and Applied Basic Research Foundation (2020B1515020037), and Pearl River Talent Plan Program of Guangdong (2019QN01X120)
More Information
  • 光谱分析技术具有快速、准确和绿色检测的特点,在科学研究、信息、生物医疗、食药检测、农业、环境和安防等领域有广泛而且重要的应用。然而现有光谱技术与检测设备通常较为庞大复杂,难以适合现场快检、轻载荷平台等便携式应用场景。近年来,微型光谱检测技术和设备受到广泛关注并得到迅速发展,具有尺寸、重量、功耗等方面的显著优势,尤其是基于散斑检测的计算光谱分析技术,可以通过记录分析散射元件对被测光形成的散斑图获得高精度的光谱信息。本文将介绍相关技术原理和技术发展现状,分析现有技术性能和优缺点,讨论并总结未来发展方向和应用前景。

  • Overview: Fast, accurate and nondestructive spectral analysis technique is important to differentiate matters and widely used in the fields of scientific research, information, biomedical, pharmaceutical detection, agriculture, environment, and security. The existing spectroscopic analysis equipments usually use individual optical elements such as gratings, prisms and interferometer to obtain spectral information, and therefore the whole system is usually bulky, complex and expensive, which are difficult to adapt to portable application scenarios such as on-site rapid detection, point-of-care diagnostics, and light-load platform in low-resource settings. It is not straight forward to minimize the conventional spectrometer without a loss of performance because the spectral resolution is usually associated with the length of light path. Novel mechanisms and advanced techniques are required to tackle this issue. With the rapid developments of the novel nanophotonic techniques and micro-nano fabrication methods, spectral analysis has been achieved on a single chip with decent spectral resolution, for example, quantum dot microspectrometer, photonic crystal microspectrometer, and so on, which shows great advantages in volume, weight, integration, cost, etc. In addition, combining such minimized spectrometers together with the cloud technology and big data technology is expected to significantly improve the efficiency of spectral information in collection, distribution and analysis, which is important for timely, accurate and portable applications. In particular, the computational spectral technology based on the speckle inspection can obtain high-resolution spectral information by recording and analyzing the speckle patterns formed by the light scattering process. In general, the speckle detection-based spectral analysis techniques are divided into two categories: the waveguide types and the normal incidence types. The waveguide types include multimode fibers, multimode waveguides, and in-plane scatters. Different modes have different propagation constants and thus different phase delay. Different scattering paths also result in different phase delay. The light interference therefore induces the generation of the wavelength-dependent speckles. The normal incidence type usually includes disordered micro-nano structures such as nanoparticles, micro-holes, and frosted glass. Similar optical interference phenomenon occurs and generates wavelength-dependent speckles. By initially calibrating the speckle generation structures by a series of monochromatic light and dealing the speckle with the compressive sensing algorithm, the spectral information of the target spectrum can be reconstructed. This paper will introduce the relevant technical principles and technical development status, analyze the existing technical performance, advantages and disadvantages, discuss and summarize the future development direction and application prospects.

  • 加载中
  • 图 1  散斑检测的微型计算光谱仪原理图。(a) 入射光经过散射元件后在探测器阵列上形成散斑分布的示意图;(b) 基于映射矩阵的待测光谱重构原理示意图

    Figure 1.  Schematic diagram of micro-computing spectrometer for speckle detection. (a) Schematic of speckle pattern distribution on the detector array after the incident light passing through the dispersive component; (b) Schematic diagram of spectral reconstruction measured based on mapping matrix

    图 2  多模光纤的微型光谱仪示意图。(a) 不同波长入射光在5 m长多模光纤出射端的散斑分布、谱自相关函数和窄带激光谱线测试结果[45];(b) 基于七根多模光纤波分复用的光纤微型光谱仪和100 nm宽带范围的光谱测试结果[48];(c) 基于光开关空分复用的光纤微型光谱仪、谱自相关函数和窄带激光谱线测试结果[59];(d) 基于拉锥光纤的光纤微型光谱仪、不同波长散斑分布和窄带激光谱线测试结果[60]

    Figure 2.  Diagram of miniature spectrometer with multimode fiber. (a) Speckle pattern intensity distribution at the end of a 5 m long multimode fiber with varying input wavelength, spectral correlation function of the different length multimode fiber, and 5 m long multimode fiber spectrometer can resolve narrow-band laser spectral lines[45]; (b) Fiber spectrometer with wavelength division multiplexers and a 1-to-7 fan-out fiber bundle, reconstructed spectrum test results in the 100 nm bandwidth[48]; (c) Miniature multimode fiber spectrometer using optical switch space-division multiplexing, spectral correlation function, reconstructed narrow spectral lines test results[59]; (d) Miniature spectrometer using multimode tapered optical fibre, speckle pattern intensity distribution with varying input wavelength, and reconstructed narrow spectral lines test results[60]

    图 3  平面条形光波导的微型光谱仪。(a) 基于多模螺旋波导的微型光谱仪示意图、不同波长散斑分布、谱自相关函数和窄带激光谱线测试结果[46];(b) 基于级联光开关阵列的光谱测试范围扩展技术和测试结果[63]

    Figure 3.  Diagram of a miniature spectrometer with a planar strip optical waveguide. (a) Schematic of a spiral spectrometer, speckle pattern intensity distribution with varying input wavelength, spectral correlation function, and reconstructed narrow laser spectral lines test results[46]; (b) Schematic of input switch matrix silicon multimode waveguide spectrometer, and reconstructed test results[63]

    图 4  平面光子晶体及微环光波导的微型光谱仪示意图。(a) 基于光子晶体超棱镜效应的微型光谱仪示意图和不同波长在输出波导处形成的散斑分布[65];(b) 基于微环谐振腔阵列的微型光谱仪、不同波长对应的面外散斑分布和光谱测试结果[69];(c) 基于数字平面全息图光谱仪示意图、散斑分布和光谱测试结果[71]

    Figure 4.  Diagram of miniature spectrometer with planar photonic crystal and micro-ring optical waveguide. (a) Schematic of integrated photonic crystal spectrometers, and speckle distribution with different wavelengths at the output waveguide[65]; (b) Micro-spectrometer based on miniaturized microdonut resonators array, out-of-plane speckle pattern intensity distribution with varying input wavelength, and reconstructed spectral test results[69]; (c) Schematic of an integrated digital plane hologram spectrometer, speckle pattern intensity distribution, and reconstructed spectral test results[71]

    图 5  平面散射体导光结构的微型光谱仪。(a) 基于无序光子结构的光谱仪的SEM图像,底部方框区域为放大的图像,比例尺为1 μm。右边为在1500 nmTE偏振光数值模拟结果示意图和在1500 nm处实验结果图像[47];(b) 无序光子结构的校准矩阵[47];(c) 基于无序光子结构所有检测通道上的平均光强度的光谱相关函数[47];(d) 基于无序光子晶体结构光谱仪的窄带激光谱线测试结果[47]

    Figure 5.  Miniature spectrometer with plane scatter light guide structure. (a) SEM image of the disordered photonic spectrometer, the bottom area is an enlarged image with a scale of 1 μm, the right area is numerical simulation and experimental results at 1500 nm[47]; (b) Calibration matrix of disordered photonic structure[47]; (c) The spectral correlation function based on the average intensity of all detection channels[47]; (d) Disordered photonic spectrometer can resolve narrow-band laser spectral lines[47]

    图 6  部分空间型光谱仪。(a) 基于非均匀自组装光子晶体的微型光谱仪示意图、散斑分布和光谱测试结果[74];(b) 氧化铝颗粒的SEM图像和远场散斑图[75]

    Figure 6.  Part of spatial type spectrometer. (a) Schematic of miniature spectrometer based on inhomogeneous and self-assembled disordered photonic crystals, speckle pattern distribution, and spectral test results[74]; (b) SEM image and far-field speckle pattern of alumina particles[75]

    图 7  空间散射结构型光谱仪。(a) 基于微米孔阵列的微型光谱仪示意图、散斑分布和光谱测试结果[49];(b) 基于磨砂玻璃的微型光谱仪示意图,以及可见光和紫外波段的光谱测试结果[14];(c) 基于磨砂玻璃的方法并结合上下转换材料分别在紫外、可见光、红外三个波段的光谱测试结果[77]

    Figure 7.  Space scattering structure type spectrometer. (a) Schematic of miniature spectrometer based on hole array, speckle distribution and spectrum test results[49]; (b) Schematic of a miniature spectrometer based on frosted glass, and the spectrum test results in the visible and ultraviolet bands[14]; (c) The frosted glass spectrometer using up conversion and down conversion materials spectral test results in the three bands of ultraviolet, visible and infrared[77]

    图 8  相位板、光栅和纳米颗粒结构型光谱仪。(a) 基于相位版的光谱分析技术:两类相位版的槽深分布、散斑分布和对应的谱自相关函数[33];(b) 基于无序取向的光栅单元阵列的微型光谱仪示意图[79];(c) 基于纳米颗粒散斑增强的棱镜光谱仪示意图和散斑分布[80]

    Figure 8.  Polychromats, grating, and nanoparticles structure type spectrometer. (a) Spectral analysis based on the polychromats: the groove depth distribution, speckle pattern distribution and correlation function of the two types of polychromats[33]; (b) Schematic diagram of the random grating array speckle spectrometer[79]; (c) Schematic of nanoparticles speckle-enhanced prism spectrometer[80]

  • [1]

    史俊锋, 惠梅, 王东生, 等. 光谱仪的微型化及其应用[J]. 光学技术, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016

    Shi J F, Hui M, Wang D S, et al. Micromation and applications of spectrometers[J]. Opt Tech, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016

    [2]

    Yang T, Peng J X, Ho H P, et al. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card[J]. Proc SPIE, 2018, 10616: 1061610. doi: 10.1117/12.2292789

    [3]

    Pang Y J, Zhang Y X, Yang H D, et al. Compact broadband high-resolution infrared spectrometer with a dihedral reflector[J]. Opt Express, 2017, 25(13): 14960-14967. doi: 10.1364/OE.25.014960

    [4]

    Yang T, Zhang Y, Ge J C, et al. Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces[J]. Opt Lett, 2019, 44(24): 6061-6064. doi: 10.1364/OL.44.006061

    [5]

    Avrutsky I, Salakhutdinov I, Chaganti K. Diffractive imaging micro-spectrometer[J]. Proc SPIE, 2006, 6388: 63880Q. doi: 10.1117/12.694275

    [6]

    Podmore H, Scott A, Lee R, et al. A compressive-sensing fourier-transform on-chip Raman spectrometer[J]. Photonic Instrum Eng V, 2018, 10539: 105390L. 10.1117/12.2288375

    [7]

    Ballard Z S, Shir D, Bhardwaj A, et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning[J]. ACS Nano, 2017, 11(2): 2266-2274. doi: 10.1021/acsnano.7b00105

    [8]

    Reinig P, Grüger H, Knobbe J, et al. Bringing NIR spectrometers into mobile phones[J]. Proc SPIE, 2018, 10545: 105450F.

    [9]

    McGonigle A J S, Wilkes T C, Pering T D, et al. Smartphone spectrometers[J]. Sensors (Basel), 2018, 18(1): 223. doi: 10.1117/12.2289931

    [10]

    Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70. doi: 10.1038/nature14576

    [11]

    Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5

    [12]

    Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481-4484. doi: 10.1364/OL.43.004481

    [13]

    Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer[J]. ACS Photonics, 2019, 6(1): 79-86. doi: 10.1021/acsphotonics.8b01503

    [14]

    Yang T, Huang X L, Ho H P, et al. Compact spectrometer based on a frosted glass[J]. IEEE Photonics Techno Lett, 2017, 29(2): 217-220. doi: 10.1109/LPT.2016.2636340

    [15]

    Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 1017-1020. doi: 10.1126/science.aax8814

    [16]

    Pichette J, Charle W, Lambrechts A. Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan[J]. Proc SPIE, 2017, 10110: 1011014. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2605924

    [17]

    Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology[J]. Proc SPIE, 2019, 10931: 1093108. doi: 10.1117/12.2510472

    [18]

    Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electron Adv, 2020, 3(3): 190040. doi: 10.29026/oea.2020.190040

    [19]

    Cao H. Perspective on speckle spectrometers[J]. J Opt, 2017, 19(6): 060402. doi: 10.1088/2040-8986/aa7251

    [20]

    刘建学, 尹晓慧, 韩四海, 等. 便携式近红外光谱仪研究进展[J]. 河南农业大学学报, 2019, 53(4): 662-670. http://d.wanfangdata.com.cn/periodical/hennannydxxb201904024

    Liu J X, Yin X H, Han S H, et al. Review of portable near-infrared spectrometers[J]. J Henan Agri Univ, 2019, 53(4): 662-670. http://d.wanfangdata.com.cn/periodical/hennannydxxb201904024

    [21]

    王伟平, 金里. 芯片级硅基光谱仪研究进展[J]. 光谱学与光谱分析, 2020, 40(2): 333-342. http://www.cnki.com.cn/Article/CJFDTotal-GUAN202002001.htm

    Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform[J]. Spectrosc Spectral Anal, 2020, 40(2): 333-342. http://www.cnki.com.cn/Article/CJFDTotal-GUAN202002001.htm

    [22]

    Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Opt Express, 2013, 21(5): 6584-6600. doi: 10.1364/OE.21.006584

    [23]

    Sefler G A, Shaw T J, Valley G C. Demonstration of speckle-based compressive sensing system for recovering RF signals[J]. Opt Express, 2018, 26(17): 21390-21402. doi: 10.1364/OE.26.021390

    [24]

    Halpaap D, Tiana-Alsina J, Vilaseca M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Opt Express, 2019, 27(20): 27737-27744. doi: 10.1364/OE.27.027737

    [25]

    Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Lett, 2020, 20(1): 320-328. doi: 10.1021/acs.nanolett.9b03862

    [26]

    Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556-1563. doi: 10.1109/JSEN.2010.2103054

    [27]

    Redding B, Popoff S M, Bromberg Y, et al. Noise analysis of spectrometers based on speckle pattern reconstruction[J]. Appl Opt, 2014, 53(3): 410-417. doi: 10.1364/AO.53.000410

    [28]

    Yee G M, Maluf N I, Hing P A, et al. Miniature spectrometers for biochemical analysis[J]. Sens Actuators A Phys, 1997, 58(1): 61-66. doi: 10.1016/S0924-4247(97)80225-7

    [29]

    Ma X, Li M Y, He J J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics J, 2013, 5(2): 6600807. doi: 10.1109/JPHOT.2013.2250944

    [30]

    Chang C C, Lin N T, Kurokawa U, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection[J]. Opt Eng, 2011, 50(11): 114402. doi: 10.1117/1.3645086

    [31]

    Kraft M, Kenda A, Frank A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Anal Bioanal Chem, 2006, 386(5): 1259-1266. doi: 10.1007/s00216-006-0726-5

    [32]

    Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Sci Rep, 2017, 7(1): 40693. doi: 10.1038/srep40693

    [33]

    Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Opt Express, 2014, 22(18): 21541-21550. doi: 10.1364/OE.22.021541

    [34]

    Valley G C, Sefler G A, Shaw T J. Multimode waveguide speckle patterns for compressive sensing[J]. Opt Lett, 2016, 41(11): 2529-2532. doi: 10.1364/OL.41.002529

    [35]

    Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056-1061. doi: 10.1364/OE.16.001056

    [36]

    唐川雁, 史姣姣. 基于变换域的压缩感知快速重构算法[J]. 软件导刊, 2019, 18(7): 96-99. http://d.wanfangdata.com.cn/periodical/rjdk201907023

    Tang C Y, Shi J J. Fast reconstruction algorithm based on transformation domain for compressed sensing[J]. Softw Guide, 2019, 18(7): 96-99. http://d.wanfangdata.com.cn/periodical/rjdk201907023

    [37]

    Brady D J, Gehm M E, Pitsianis N, et al. Compressive sampling strategies for integrated microspectrometers[J]. Intell Integr Microsystems, 2006, 6232: 62320C. doi: 10.1117/12.666124

    [38]

    LU C C, Chen K, Huang L R, et al. Signal recovery for compressive spectrometers[J]. Sens Agric Food Qual Saf X, 2018, 10665: 106650U.

    [39]

    Chong X Y, Li E W, Squire K, et al. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array[J]. Appl Phys Lett, 2016, 108(22): 221106. doi: 10.1063/1.4953261

    [40]

    Kim C, Park D, Lee H N. Convolutional neural networks for the reconstruction of spectra in compressive sensing spectrometers[J]. Opt Data Sci Ⅱ, 2019, 10937: 109370L. doi: 10.1117/12.2509548

    [41]

    Zhang S, Dong Y H, Fu H Y, et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors (Basel), 2018, 18(2): 644. doi: 10.3390/s18020644

    [42]

    Hong L Y, Sengupta K. Fully integrated optical spectrometer in visible and Near-IR in CMOS[J]. IEEE Trans Biomed Circuits Syst, 2017, 11(6): 1176-1191. doi: 10.1109/TBCAS.2017.2774603

    [43]

    Oliver J, Lee W B, Lee H N. Filters with random transmittance for improving resolution in filter-array-based spectrometers[J]. Opt Express, 2013, 21(4): 3969-3989. doi: 10.1364/OE.21.003969

    [44]

    Feller S D, Chen H J, Brady D J, et al. Multiple order coded aperture spectrometer[J]. Opt Express, 2007, 15(9): 5625-5630. doi: 10.1364/OE.15.005625

    [45]

    Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Opt Lett, 2012, 37(16): 3384-3386. doi: 10.1364/OL.37.003384

    [46]

    Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9): 956-962. doi: 10.1364/OPTICA.3.000956

    [47]

    Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746-751. doi: 10.1038/nphoton.2013.190

    [48]

    Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Opt Lett, 2016, 41(9): 2029-2032. doi: 10.1364/OL.41.002029

    [49]

    Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217-3220. doi: 10.1364/OL.40.003217

    [50]

    Freude W, Fritzsche C, Grau G, et al. Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides[J]. J Lightwave Technol, 1986, 4(1): 64-72. doi: 10.1109/JLT.1986.1074634

    [51]

    Hlubina P. Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern[J]. J Mod Opt, 1994, 41(5): 1001-1014. doi: 10.1080/09500349414550941

    [52]

    Yamaguchi I. A laser-speckle strain gauge[J]. J Phys E: Sci Instrum, 1981, 14(11): 1270. doi: 10.1088/0022-3735/14/11/012

    [53]

    Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Opt Acta: Int J Opt, 1981, 28(10): 1359-1376. doi: 10.1080/713820454

    [54]

    Yamaguchi I, Kobayashi K, Yaroskavsky L P. Measurement of surface roughness by speckle correlation[J]. Opt Eng, 2004, 43(11): 2753-2762. doi: 10.1117/1.1797851

    [55]

    Imai M. Statistical properties of optical fiber speckles[J]. 北海道大學, 1986, 130: 89-104. http://ci.nii.ac.jp/naid/120001758806

    [56]

    Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3): 175-180. doi: 10.1364/OPTICA.1.000175

    [57]

    徐丹阳, 杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现[J]. 光电工程, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152

    Xu D Y, Du C N. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electron Eng, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152

    [58]

    Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer[J]. Nat Commun, 2016, 7(1): 12995. doi: 10.1038/ncomms12995

    [59]

    Meng Z Y, Li J Q, Yin C J, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP Adv, 2019, 9(1): 015004. doi: 10.1063/1.5052276

    [60]

    Wan N H, Meng F, Schröder T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nat Commun, 2015, 6: 7762. doi: 10.1038/ncomms8762

    [61]

    Kohlgraf-Owens T W, Dogariu A. Transmission matrices of random media: means for spectral polarimetric measurements[J]. Opt Lett, 2010, 35(13): 2236-2238. doi: 10.1364/OL.35.002236

    [62]

    Hang Q, Ung B, Syed I, et al. Photonic bandgap fiber bundle spectrometer[J]. Appl Opt, 2010, 49(25): 4791-4800. doi: 10.1364/AO.49.004791

    [63]

    Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Sci Rep, 2017, 7: 43454. doi: 10.1038/srep43454

    [64]

    Pervez N K, Cheng W, Jia Z, et al. Photonic crystal spectrometer[J]. Opt Express, 2010, 18(8): 8277-8285. doi: 10.1364/OE.18.008277

    [65]

    Momeni B, Hosseini E S, Askari M, et al. Integrated photonic crystal spectrometers for sensing applications[J]. Opt Commun, 2009, 282(15): 3168-3171. doi: 10.1016/j.optcom.2009.04.052

    [66]

    Momeni B, Yegnanarayanan S, Soltani M, et al. Silicon nanophotonic devices for integrated sensing[J]. Journal of Nanophotonics, 2009, 3(1): 031001. doi: 10.1117/1.3122986

    [67]

    Soltani M, Li Q, Yegnanarayanan S, et al. Large-scale array of small high-Q microdisk resonators for onchip spectral analysis[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009: 703-704.

    [68]

    Xia Z X, Eftekhar A A, Soltani M, et al. Near infrared absorption sensor based on large-scale array of miniaturized microdonut resonators[C]. Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, 2010: IME6.

    [69]

    Xia Z X, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Opt Exp, 2011, 19(13): 12356-12364. doi: 10.1364/OE.19.012356

    [70]

    Babin S, Bugrov A, Cabrini S, et al. Digital optical spectrometer-on-chip[J]. Appl Phys Lett, 2009, 95(4): 041105. doi: 10.1063/1.3190199

    [71]

    Calafiore G, Koshelev A, Dhuey S, et al. Holographic planar lightwave circuit for on-chip spectroscopy[J]. Light: Sci Appl, 2014, 3(9): e203. doi: 10.1038/lsa.2014.84

    [72]

    Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5

    [73]

    王国栋, 夏果, 李志远, 等. 便携式紫外-可见光谱仪设计及关键技术研究[J]. 光电工程, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195

    Wang G D, Xia G, Li Z Y, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electron Eng, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195

    [74]

    Xu Z C, Wang Z L, Sullivan M, et al. Multimodal multiplex spectroscopy using photonic crystals[J]. Opt Express, 2003, 11(18): 2126-2133. doi: 10.1364/OE.11.002126

    [75]

    Mazilu M, Vettenburg T, Di Falco A, et al. Random super-prism wavelength meter[J]. Opt Lett, 2014, 39(1): 96-99. doi: 10.1364/OL.39.000096

    [76]

    Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer[J]. Opt Lett, 2015, 40(14): 3264-3267. doi: 10.1364/OL.40.003264

    [77]

    Yang T, Peng J X, Li X A, et al. Compact broadband spectrometer based on upconversion and downconversion luminescence[J]. Opt Lett, 2017, 42(21): 4375-4378. doi: 10.1364/OL.42.004375

    [78]

    Wang P, Menon R. Computational spectrometer based on a broadband diffractive optic[J]. Opt Express, 2014, 22(12): 14575-14587. doi: 10.1364/OE.22.014575

    [79]

    Wu L, Cai Z J, Su Y F, et al. Simulative study on speckle-spectral properties of a random pixelated grating[J]. J Opt Soc Am A, 2019, 36(8): 1410-1417. doi: 10.1364/JOSAA.36.001410

    [80]

    Çetindağ Ş K, Toy M F, Ferhanoğlu O, et al. A speckle-enhanced prism spectrometer with high dynamic range[J]. IEEE Photonics Technol Lett, 2018, 30(24): 2139-2142. doi: 10.1109/LPT.2018.2879247

    [81]

    王贤俊, 龙亚雪, 郑海燕, 等. 超高分辨力微型光谱仪的光学系统设计[J]. 光电工程, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228

    Wang X J, Long Y X, Zheng H Y, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electron Eng, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228

  • 加载中

(8)

计量
  • 文章访问数:  8389
  • PDF下载数:  1476
  • 施引文献:  0
出版历程
收稿日期:  2020-05-23
修回日期:  2020-09-27
刊出日期:  2021-03-15

目录

/

返回文章
返回